x+2y=5 mx+y=4 a)tìm m để hpt có nghiệm duy nhất mà xy trái dấu b)Tìm m để hpt có nghiệm duy nhất x=giá tri tuyệt đối y 13/11/2021 Bởi Savannah x+2y=5 mx+y=4 a)tìm m để hpt có nghiệm duy nhất mà xy trái dấu b)Tìm m để hpt có nghiệm duy nhất x=giá tri tuyệt đối y
Đáp án: b) \(\left[ \begin{array}{l}m = \dfrac{7}{5}\\m = \dfrac{1}{5}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}\left\{ \begin{array}{l}x + 2y = 5\\mx + y = 4\end{array} \right.\\ \to \left\{ \begin{array}{l}y = 4 – mx\\x + 2\left( {4 – mx} \right) = 5\left( 1 \right)\end{array} \right.\\\left( 1 \right) \to x + 8 – 2mx = 5\\ \to \left( {1 – 2m} \right)x = – 3\\ \to x = – \dfrac{3}{{1 – 2m}}\\ \to x = \dfrac{3}{{2m – 1}}\\ \to y = 4 – m.\dfrac{3}{{2m – 1}} = \dfrac{{8m – 4 – 3m}}{{2m – 1}} = \dfrac{{5m – 4}}{{2m – 1}}\\DK:m \ne \dfrac{1}{2}\\a)Do:xy < 0\\ \to \dfrac{3}{{2m – 1}}.\dfrac{{5m – 4}}{{2m – 1}} < 0\\ \to \dfrac{{3\left( {5m – 4} \right)}}{{{{\left( {2m – 1} \right)}^2}}} < 0\\ \to 5m – 4 < 0\left( {do:{{\left( {2m – 1} \right)}^2} > 0\forall m \ne \dfrac{1}{2}} \right)\\ \to m < \dfrac{4}{5}\\b)Do:x = \left| y \right|\\ \to {x^2} = {y^2}\\ \to {\left( {\dfrac{3}{{2m – 1}}} \right)^2} = {\left( {\dfrac{{5m – 4}}{{2m – 1}}} \right)^2}\\ \to 9 = 25{m^2} – 40m + 16\\ \to 25{m^2} – 40m + 7 = 0\\ \to \left[ \begin{array}{l}m = \dfrac{7}{5}\\m = \dfrac{1}{5}\end{array} \right.\end{array}\) Bình luận
Đáp án:
b) \(\left[ \begin{array}{l}
m = \dfrac{7}{5}\\
m = \dfrac{1}{5}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
x + 2y = 5\\
mx + y = 4
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 4 – mx\\
x + 2\left( {4 – mx} \right) = 5\left( 1 \right)
\end{array} \right.\\
\left( 1 \right) \to x + 8 – 2mx = 5\\
\to \left( {1 – 2m} \right)x = – 3\\
\to x = – \dfrac{3}{{1 – 2m}}\\
\to x = \dfrac{3}{{2m – 1}}\\
\to y = 4 – m.\dfrac{3}{{2m – 1}} = \dfrac{{8m – 4 – 3m}}{{2m – 1}} = \dfrac{{5m – 4}}{{2m – 1}}\\
DK:m \ne \dfrac{1}{2}\\
a)Do:xy < 0\\
\to \dfrac{3}{{2m – 1}}.\dfrac{{5m – 4}}{{2m – 1}} < 0\\
\to \dfrac{{3\left( {5m – 4} \right)}}{{{{\left( {2m – 1} \right)}^2}}} < 0\\
\to 5m – 4 < 0\left( {do:{{\left( {2m – 1} \right)}^2} > 0\forall m \ne \dfrac{1}{2}} \right)\\
\to m < \dfrac{4}{5}\\
b)Do:x = \left| y \right|\\
\to {x^2} = {y^2}\\
\to {\left( {\dfrac{3}{{2m – 1}}} \right)^2} = {\left( {\dfrac{{5m – 4}}{{2m – 1}}} \right)^2}\\
\to 9 = 25{m^2} – 40m + 16\\
\to 25{m^2} – 40m + 7 = 0\\
\to \left[ \begin{array}{l}
m = \dfrac{7}{5}\\
m = \dfrac{1}{5}
\end{array} \right.
\end{array}\)