3^(√2(x-1)) +1) -3^x=x²-4x+3 giúp mình vs 16/08/2021 Bởi Charlie 3^(√2(x-1)) +1) -3^x=x²-4x+3 giúp mình vs
Đáp án: \[\left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\] Giải thích các bước giải: ĐKXĐ: \(x \ge 1\) Ta có: \(\begin{array}{l}{3^{\sqrt {2\left( {x – 1} \right)} + 1}} – {3^x} = {x^2} – 4x + 3\\ \Leftrightarrow {3.3^{\sqrt {2\left( {x – 1} \right)} }} – {3.3^{x – 1}} = {x^2} – 4x + 3\\ \Leftrightarrow {3^{\sqrt {2\left( {x – 1} \right)} }} – {3^{x – 1}} = \frac{{{x^2} – 4x + 3}}{3}\\ \Leftrightarrow {3^{\sqrt {2\left( {x – 1} \right)} }} – {3^{x – 1}} = \frac{{{{\left( {x – 1} \right)}^2} – 2\left( {x – 1} \right)}}{3}\\ \Leftrightarrow {3^{\sqrt {2\left( {x – 1} \right)} }} + \frac{{2\left( {x – 1} \right)}}{3} = {3^{x – 1}} + \frac{{{{\left( {x – 1} \right)}^2}}}{3}\,\,\,\,\,\,\left( 1 \right)\end{array}\) Xét hàm đặc trưng: \(f\left( t \right) = {3^t} + \frac{{{t^2}}}{3}\,\,\,\,\left( {t \ge 0} \right)\) ta có: \(f’\left( t \right) = {3^t}.\ln 3 + \frac{{2t}}{3} > 0,\,\,\,\,\forall t \ge 0\) Do đó, \(f\left( {{t_1}} \right) = f\left( {{t_2}} \right) \Leftrightarrow {t_1} = {t_2}\,\,\,\,\,\,\left( {{t_1};{t_2} \ge 0} \right)\) Ta có: \(\begin{array}{l}\left( 1 \right) \Leftrightarrow f\left( {\sqrt {2\left( {x – 1} \right)} } \right) = f\left( {x – 1} \right)\\ \Leftrightarrow \sqrt {2\left( {x – 1} \right)} = x – 1\\ \Leftrightarrow 2\left( {x – 1} \right) = {\left( {x – 1} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}x – 1 = 0\\x – 1 = 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\,\,\,\left( {t/m} \right)\end{array}\) Vậy \(\left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\) Bình luận
Đáp án:
\[\left[ \begin{array}{l}
x = 1\\
x = 3
\end{array} \right.\]
Giải thích các bước giải:
ĐKXĐ: \(x \ge 1\)
Ta có:
\(\begin{array}{l}
{3^{\sqrt {2\left( {x – 1} \right)} + 1}} – {3^x} = {x^2} – 4x + 3\\
\Leftrightarrow {3.3^{\sqrt {2\left( {x – 1} \right)} }} – {3.3^{x – 1}} = {x^2} – 4x + 3\\
\Leftrightarrow {3^{\sqrt {2\left( {x – 1} \right)} }} – {3^{x – 1}} = \frac{{{x^2} – 4x + 3}}{3}\\
\Leftrightarrow {3^{\sqrt {2\left( {x – 1} \right)} }} – {3^{x – 1}} = \frac{{{{\left( {x – 1} \right)}^2} – 2\left( {x – 1} \right)}}{3}\\
\Leftrightarrow {3^{\sqrt {2\left( {x – 1} \right)} }} + \frac{{2\left( {x – 1} \right)}}{3} = {3^{x – 1}} + \frac{{{{\left( {x – 1} \right)}^2}}}{3}\,\,\,\,\,\,\left( 1 \right)
\end{array}\)
Xét hàm đặc trưng: \(f\left( t \right) = {3^t} + \frac{{{t^2}}}{3}\,\,\,\,\left( {t \ge 0} \right)\) ta có:
\(f’\left( t \right) = {3^t}.\ln 3 + \frac{{2t}}{3} > 0,\,\,\,\,\forall t \ge 0\)
Do đó, \(f\left( {{t_1}} \right) = f\left( {{t_2}} \right) \Leftrightarrow {t_1} = {t_2}\,\,\,\,\,\,\left( {{t_1};{t_2} \ge 0} \right)\)
Ta có:
\(\begin{array}{l}
\left( 1 \right) \Leftrightarrow f\left( {\sqrt {2\left( {x – 1} \right)} } \right) = f\left( {x – 1} \right)\\
\Leftrightarrow \sqrt {2\left( {x – 1} \right)} = x – 1\\
\Leftrightarrow 2\left( {x – 1} \right) = {\left( {x – 1} \right)^2}\\
\Leftrightarrow \left[ \begin{array}{l}
x – 1 = 0\\
x – 1 = 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = 3
\end{array} \right.\,\,\,\left( {t/m} \right)
\end{array}\)
Vậy \(\left[ \begin{array}{l}
x = 1\\
x = 3
\end{array} \right.\)