$x^{3}$ -$x^{2}$ -x-5=(x+4)$\sqrt[]{x+2}$ 04/10/2021 Bởi Madeline $x^{3}$ -$x^{2}$ -x-5=(x+4)$\sqrt[]{x+2}$
$\begin{array}{l} {x^3} – {x^2} – x – 5 = (x + 4)\sqrt {x + 2} \\ \Leftrightarrow {x^3} – {x^2} – x – 5 = (x + 4)\left[ {\sqrt {x + 2} – (x – 1)} \right] + (x + 4)(x – 1)\\ \Leftrightarrow (x + 4)\left[ {\sqrt {x + 2} – (x – 1)} \right] + {x^2} + 3x – 4 – {x^3} + {x^2} + x + 5 = 0\\ \Leftrightarrow \dfrac{{ – \left( {x + 4} \right)\left( {{x^2} – 3x – 1} \right)}}{{\sqrt {x + 2} + (x – 1)}} – \left( {x + 1} \right)\left( {{x^2} – 3x – 1} \right) = 0\\ \Leftrightarrow \left( {{x^2} – 3x – 1} \right)\left[ {\dfrac{{ – \left( {x + 4} \right)}}{{\sqrt {x + 2} + (x – 1)}} – (x + 1)} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l} {x^2} – 3x – 1 = 0 \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{3 + \sqrt {13} }}{2}\\ x = \dfrac{{3 – \sqrt {13} }}{2} \end{array} \right.\\ \left[ {\dfrac{{ – \left( {x + 4} \right)}}{{\sqrt {x + 2} + (x – 1)}} – (x + 1)} \right] = 0(2) \end{array} \right. \end{array}$ Thử lại ta được $x=\dfrac{3+\sqrt{13}}{2}$ thỏa mãn phương trình Xét $(2)$: $\begin{array}{l}\dfrac{{ – \left( {x + 4} \right)}}{{\sqrt {x + 2} + (x – 1)}} – (x + 1) = 0\\ \Leftrightarrow – (x + 4) – (x + 1)(x – 1) – (x + 1)\sqrt {x + 2} = 0\\ \Leftrightarrow – x – 4 – {x^2} + 1 – (x + 1)\sqrt {x + 2} = 0\\ \Leftrightarrow {x^2} + x + 3 + (x + 1)\sqrt {x + 2} = 0\\ \Leftrightarrow 2{x^2} + 2x + 6 + 2(x + 1)\sqrt {x + 2} = 0\\ \Leftrightarrow {(x + 1)^2} + x + 2 + 2(x + 1)\sqrt {x + 2} + {x^2} – x + 3 = 0\\ \Leftrightarrow \underbrace {{{\left( {\sqrt {x + 2} + x + 1} \right)}^2}}_{ > 0} + \underbrace {{x^2} – x + 3}_{ > 0} = 0\end{array}$ Bình luận
$\begin{array}{l} {x^3} – {x^2} – x – 5 = (x + 4)\sqrt {x + 2} \\ \Leftrightarrow {x^3} – {x^2} – x – 5 = (x + 4)\left[ {\sqrt {x + 2} – (x – 1)} \right] + (x + 4)(x – 1)\\ \Leftrightarrow (x + 4)\left[ {\sqrt {x + 2} – (x – 1)} \right] + {x^2} + 3x – 4 – {x^3} + {x^2} + x + 5 = 0\\ \Leftrightarrow \dfrac{{ – \left( {x + 4} \right)\left( {{x^2} – 3x – 1} \right)}}{{\sqrt {x + 2} + (x – 1)}} – \left( {x + 1} \right)\left( {{x^2} – 3x – 1} \right) = 0\\ \Leftrightarrow \left( {{x^2} – 3x – 1} \right)\left[ {\dfrac{{ – \left( {x + 4} \right)}}{{\sqrt {x + 2} + (x – 1)}} – (x + 1)} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l} {x^2} – 3x – 1 = 0 \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{3 + \sqrt {13} }}{2}\\ x = \dfrac{{3 – \sqrt {13} }}{2} \end{array} \right.\\ \left[ {\dfrac{{ – \left( {x + 4} \right)}}{{\sqrt {x + 2} + (x – 1)}} – (x + 1)} \right] = 0(2) \end{array} \right. \end{array}$
Thử lại ta được $x=\dfrac{3+\sqrt{13}}{2}$ thỏa mãn phương trình
Xét $(2)$:
$\begin{array}{l}
\dfrac{{ – \left( {x + 4} \right)}}{{\sqrt {x + 2} + (x – 1)}} – (x + 1) = 0\\
\Leftrightarrow – (x + 4) – (x + 1)(x – 1) – (x + 1)\sqrt {x + 2} = 0\\
\Leftrightarrow – x – 4 – {x^2} + 1 – (x + 1)\sqrt {x + 2} = 0\\
\Leftrightarrow {x^2} + x + 3 + (x + 1)\sqrt {x + 2} = 0\\
\Leftrightarrow 2{x^2} + 2x + 6 + 2(x + 1)\sqrt {x + 2} = 0\\
\Leftrightarrow {(x + 1)^2} + x + 2 + 2(x + 1)\sqrt {x + 2} + {x^2} – x + 3 = 0\\
\Leftrightarrow \underbrace {{{\left( {\sqrt {x + 2} + x + 1} \right)}^2}}_{ > 0} + \underbrace {{x^2} – x + 3}_{ > 0} = 0
\end{array}$