3/(x+2)(x+5)+5/(x+5)(x+10)+7/(x+10)(x+17)=x/(x+2)(x+17)

3/(x+2)(x+5)+5/(x+5)(x+10)+7/(x+10)(x+17)=x/(x+2)(x+17)

0 bình luận về “3/(x+2)(x+5)+5/(x+5)(x+10)+7/(x+10)(x+17)=x/(x+2)(x+17)”

  1. Đáp án:

    \(x = 15\)

    Giải thích các bước giải:

    \[\begin{array}{l}
    \frac{3}{{\left( {x + 2} \right)\left( {x + 5} \right)}} + \frac{5}{{\left( {x + 5} \right)\left( {x + 10} \right)}} + \frac{7}{{\left( {x + 10} \right)\left( {x + 17} \right)}} = \frac{x}{{\left( {x + 2} \right)\left( {x + 17} \right)}}\\
    DK:\,\,\,\left\{ \begin{array}{l}
    x \ne – 2\\
    x \ne – 5\\
    x \ne – 10\\
    x \ne – 17
    \end{array} \right.\\
    pt \Leftrightarrow \frac{{x + 5 – \left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {x + 5} \right)}} + \frac{{x + 10 – \left( {x + 5} \right)}}{{\left( {x + 5} \right)\left( {x + 10} \right)}} + \frac{{x + 17 – \left( {x + 10} \right)}}{{\left( {x + 10} \right)\left( {x + 17} \right)}} = \frac{x}{{\left( {x + 2} \right)\left( {x + 17} \right)}}\\
    \Leftrightarrow \frac{1}{{x + 2}} – \frac{1}{{x + 5}} + \frac{1}{{x + 5}} – \frac{1}{{x + 10}} + \frac{1}{{x + 10}} – \frac{1}{{x + 17}} = \frac{x}{{\left( {x + 2} \right)\left( {x + 17} \right)}}\\
    \Leftrightarrow \frac{1}{{x + 2}} – \frac{1}{{x + 17}} = \frac{x}{{\left( {x + 2} \right)\left( {x + 17} \right)}}\\
    \Leftrightarrow x + 17 – x – 2 = x\\
    \Leftrightarrow x = 15\,\,\,\left( {tm} \right).\\
    Vay\,\,\,x = 15.
    \end{array}\]

    Bình luận

Viết một bình luận