(x-3)^4 + (x-1)^4 – 16 Phân tích đa thức thành nhân tử Mọi người giúp mình với 03/07/2021 Bởi Everleigh (x-3)^4 + (x-1)^4 – 16 Phân tích đa thức thành nhân tử Mọi người giúp mình với
Đáp án: `(x-3)^4+(x-1)^4-16` `=(x-3)^4+[(x-1)^2-4][(x-1)^2+4]` `=(x-3)^4+(x^2-2x-3)(x^2-2x+5)` `=(x-3)^4+(x-3x+x-3)(x^2-2x+5)` `=(x-3)^4+(x-3)(x+1)(x^2-2x+5)` `=(x-3)[(x-3)^3+(x+1)(x^2-2x+5)]` `=(x-3)(x^3-9x^2+27x-27+x^3-2x^2+5x+x^2-2x+5)` `=(x-3)(2x^3-10x^2+30x-22)` `=2(x-3)(x^3-5x^2+15x-11)` `=2(x-3)(x^3-x^2-4x^2+4x+11x-11)` `=2(x-3)(x-1)(x^2-4x+11)` Bình luận
`=(x–3)^4+[(x–1)^2–4][(x–1)^2+4]` `=(x–3)^4+(x^2–2x–3)(x^2–2x+5)` `=(x–3)^4+(x–3x+x–3)(x^2–2x+5)` `=(x–3)^4+(x–3)(x+1)(x^2–2x+5)` `=(x–3).[(x–3)^3+(x+1)(x^2–2x+5)]` `=(x–3)(2x^3–10x^2+30x–22)` `=2(x–3)(x^3–5x^2+15x–11)` `=2(x–3)(x–1)(x^2–4x+11)` Bình luận
Đáp án:
`(x-3)^4+(x-1)^4-16`
`=(x-3)^4+[(x-1)^2-4][(x-1)^2+4]`
`=(x-3)^4+(x^2-2x-3)(x^2-2x+5)`
`=(x-3)^4+(x-3x+x-3)(x^2-2x+5)`
`=(x-3)^4+(x-3)(x+1)(x^2-2x+5)`
`=(x-3)[(x-3)^3+(x+1)(x^2-2x+5)]`
`=(x-3)(x^3-9x^2+27x-27+x^3-2x^2+5x+x^2-2x+5)`
`=(x-3)(2x^3-10x^2+30x-22)`
`=2(x-3)(x^3-5x^2+15x-11)`
`=2(x-3)(x^3-x^2-4x^2+4x+11x-11)`
`=2(x-3)(x-1)(x^2-4x+11)`
`=(x–3)^4+[(x–1)^2–4][(x–1)^2+4]`
`=(x–3)^4+(x^2–2x–3)(x^2–2x+5)`
`=(x–3)^4+(x–3x+x–3)(x^2–2x+5)`
`=(x–3)^4+(x–3)(x+1)(x^2–2x+5)`
`=(x–3).[(x–3)^3+(x+1)(x^2–2x+5)]`
`=(x–3)(2x^3–10x^2+30x–22)`
`=2(x–3)(x^3–5x^2+15x–11)`
`=2(x–3)(x–1)(x^2–4x+11)`