3/(x^4-x^3+x-1) + 1/(x+1-x^4-x^3) -4/(x^5 -x^4+x^3-x^2 +x-1) 13/11/2021 Bởi Melanie 3/(x^4-x^3+x-1) + 1/(x+1-x^4-x^3) -4/(x^5 -x^4+x^3-x^2 +x-1)
`3/(x^4-x^3+x-1) + 1/(x+1-x^4-x^3) -4/(x^5 -x^4+x^3-x^2 +x-1)` `<=>3/((x-1)(x+1)(x^2-x+1))+1/(-(x+1)(x-1)(x^2+x+1))-4/((x^4+x^2+1)(x-1))` `<=>(3(x^2+x+1)(x^4+x^2+1)-(x^2-x+1)(x^4+x^2+1)-4(x+1)(x^2-x+1)(x^2+x+1))/((x-1)(x+1)(x^2-x+1)(x^2+x+1)(x^4+x^2+1))` Vậy ….. Bình luận
`3/(x^4-x^3+x-1) + 1/(x+1-x^4-x^3) -4/(x^5 -x^4+x^3-x^2 +x-1)`
`<=>3/((x-1)(x+1)(x^2-x+1))+1/(-(x+1)(x-1)(x^2+x+1))-4/((x^4+x^2+1)(x-1))`
`<=>(3(x^2+x+1)(x^4+x^2+1)-(x^2-x+1)(x^4+x^2+1)-4(x+1)(x^2-x+1)(x^2+x+1))/((x-1)(x+1)(x^2-x+1)(x^2+x+1)(x^4+x^2+1))`
Vậy …..