4cos ³x+3 √2sin2x=8cosx sin8x-cos6x= √3(sin6x+cos8x

4cos ³x+3 √2sin2x=8cosx
sin8x-cos6x= √3(sin6x+cos8x

0 bình luận về “4cos ³x+3 √2sin2x=8cosx sin8x-cos6x= √3(sin6x+cos8x”

  1. a) $cosx (4 cos^2 x +6 \sqrt{2} sinx) = 8 cosx$

    <-> cosx = 0 hoac $ 4 cos^2 x +6 \sqrt{2} sinx = 8$

    TH1: $x = \pi/2 + k \pi$

    TH2: $4(1-sin^2 x) + 6 \sqrt{2} sinx = 8$

    $ 2 sin^2 x – 3 \sqrt{2} sinx + 2 = 0$ (ptrinh vo nghiem)

    Vay $x = \pi/2 + k \pi$.

    b) $sin(8x)- \sqrt{3} cos(8x) = \sqrt{3}sin(6x) + cos(6x)$

    $1/2 sin(8x)- \sqrt{3}/2 cos(8x) = \sqrt{3}/2 sin(6x) + 1/2 cos(6x)$

    $sin(8x-\pi/3) = sin(6x+\pi/6)$

    $8x-\pi/3 = 6x + \pi/6 + 2k \pi$ hoac $8x – \pi/3 = \pi – 6x – \pi/6 + 2k \pi$

    Hay $x=\pi /3 + k\pi$ hoac $x = \pi/12 + k\pi/7$.

    Bình luận

Viết một bình luận