6x²-13x+6=0 8x²+14x+3=0 12x²+6x-3=0 21x²+29x-10=0 13/09/2021 Bởi Eloise 6x²-13x+6=0 8x²+14x+3=0 12x²+6x-3=0 21x²+29x-10=0
6x²-13x+6=0 <=> 6x² – 4x – 9x + 6 = 0 <=> 2x(3x – 2) – 3(3x – 2) = 0 <=> (2x – 3)(3x – 2) = 0 <=> \(\left[ \begin{array}{l}2x-3=0\\3x-2=0\end{array} \right.\) Phần còn lại bạn giải nhé ^^ b) 8x²+14x+3=0 <=> 8x² + 12x + 2x + 3 = 0 <=> 4x(2x + 3) + (2x + 3) = 0 <=> (4x + 1)(2x + 3) = 0 <=> \(\left[ \begin{array}{l}4x + 1=0\\2x + 3=0\end{array} \right.\) Phần còn lại bạn giải nhé ^^ c) 12x²+6x-3=0 <=> 4x² + 2x – 1 = 0 <=> 16x² + 8x – 4 = 0 <=> 16x² + (1 + $\sqrt[]{5}$ + 1 – $\sqrt[]{5}$)4x + (1 – 5) = 0 <=> 16x² + (1 + $\sqrt[]{5}$)4x + (1 – $\sqrt[]{5}$)4x + (1 – $\sqrt[]{5}$)(1 + $\sqrt[]{5}$) = 0 <=> 4x(4x + 1 + $\sqrt[]{5}$) + (1 – $\sqrt[]{5}$)(4x + 1 + $\sqrt[]{5}$) = 0 <=> (4x + 1 – $\sqrt[]{5}$)(4x + 1 + $\sqrt[]{5}$) = 0 <=> \(\left[ \begin{array}{l}4x + 1 – \sqrt[]{5}=0\\4x + 1 + \sqrt[]{5}=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=\frac{- 1 + \sqrt[]{5}}{4}\\x=\frac{- 1 – \sqrt[]{5}}{4}\end{array} \right.\) d) 21x² + 29x – 10 = 0 <=> 21x² + 35x – 6x – 10 = 0 <=> 7x(3x + 5) – 2(3x + 5) = 0 <=> (7x – 2)(3x + 5) = 0 <=> \(\left[ \begin{array}{l}7x – 2=0\\3x + 5=0\end{array} \right.\) Phần còn lại bạn giải nhé ^^ Bình luận
6x²-13x+6=0
<=> 6x² – 4x – 9x + 6 = 0
<=> 2x(3x – 2) – 3(3x – 2) = 0
<=> (2x – 3)(3x – 2) = 0
<=> \(\left[ \begin{array}{l}2x-3=0\\3x-2=0\end{array} \right.\)
Phần còn lại bạn giải nhé ^^
b)
8x²+14x+3=0
<=> 8x² + 12x + 2x + 3 = 0
<=> 4x(2x + 3) + (2x + 3) = 0
<=> (4x + 1)(2x + 3) = 0
<=> \(\left[ \begin{array}{l}4x + 1=0\\2x + 3=0\end{array} \right.\)
Phần còn lại bạn giải nhé ^^
c)
12x²+6x-3=0
<=> 4x² + 2x – 1 = 0
<=> 16x² + 8x – 4 = 0
<=> 16x² + (1 + $\sqrt[]{5}$ + 1 – $\sqrt[]{5}$)4x + (1 – 5) = 0
<=> 16x² + (1 + $\sqrt[]{5}$)4x + (1 – $\sqrt[]{5}$)4x + (1 – $\sqrt[]{5}$)(1 + $\sqrt[]{5}$) = 0
<=> 4x(4x + 1 + $\sqrt[]{5}$) + (1 – $\sqrt[]{5}$)(4x + 1 + $\sqrt[]{5}$) = 0
<=> (4x + 1 – $\sqrt[]{5}$)(4x + 1 + $\sqrt[]{5}$) = 0
<=> \(\left[ \begin{array}{l}4x + 1 – \sqrt[]{5}=0\\4x + 1 + \sqrt[]{5}=0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=\frac{- 1 + \sqrt[]{5}}{4}\\x=\frac{- 1 – \sqrt[]{5}}{4}\end{array} \right.\)
d) 21x² + 29x – 10 = 0
<=> 21x² + 35x – 6x – 10 = 0
<=> 7x(3x + 5) – 2(3x + 5) = 0
<=> (7x – 2)(3x + 5) = 0
<=> \(\left[ \begin{array}{l}7x – 2=0\\3x + 5=0\end{array} \right.\)
Phần còn lại bạn giải nhé ^^