(6x³ – 7x² – x + 2) : (2x + 1) – 3x (x – 2)

(6x³ – 7x² – x + 2) : (2x + 1) – 3x (x – 2)

0 bình luận về “(6x³ – 7x² – x + 2) : (2x + 1) – 3x (x – 2)”

  1. @Lạc

    $(6x³ – 7x² – x + 2) : (2x + 1) – 3x (x – 2)$

    $= (6x³−6x²−x²+x−2x+2): (2x + 1) – 3x² + 6x $ 

    $= [ 6x²(x-1) – x(x-1) – 2(x-1) ] : (2x + 1) – 3x² + 6x $ 

    $= (x-1)(6x²-x-2) : (2x + 1) – 3x² + 6x $ 

    $= (x-1)[3x.(2x+1)−2.(2x+1)] : (2x + 1) – 3x² + 6x $

    $= (x-1)(2x+1)(3x-2) : (2x+1) – 3x² + 6x $ 

    $ = (x-1)(3x-2)  – 3x² + 6x $

    $= 3x²−2x−3x+2−3x²+6x $

    $ = x+2 $

    Bình luận
  2. $(6x^3-7x^2-x+2):(2x+1)-3x.(x-2)_{}$

    $⇔\frac{6x^3-7x^2-x+2}{2x+1}-3x^2+6x_{}$

    $⇔\frac{6x^3-6x^2-x^2+x-2x+2}{2x+1}-3x^2+6x_{}$

    $⇔\frac{6x^2.(x-1)-x.(x-1)-2.(x-1)}{2x+1}-3x^2+6x_{}$

    $⇔\frac{(x-1)(6x^2-x-2)}{2x+1}-3x^2+6x_{}$

    $⇔\frac{(x-1)(6x^2+3x-4x-2)}{2x+1}-3x^2+6x_{}$

    $⇔\frac{(x-1).[ 3x.(2x+1)-2.(2x+1)]}{2x+1}-3x^2+6x_{}$

    $⇔\frac{(x-1)(2x+1)(3x-2)}{2x+1}-3x^2+6x_{}$

    $⇔(x-1)(3x-2)-3x^2+6x_{}$

    $⇔3x^2-2x-3x+2-3x^2+6x_{}$

    $⇔x+2_{}$

    Bình luận

Viết một bình luận