-8/9+1/9.2/9+1/9.7/9 A=1/ 2 ²+1/3 ²+1/4 ²…1/9 ² chứng tỏ 8/9>A>2/5

-8/9+1/9.2/9+1/9.7/9
A=1/ 2 ²+1/3 ²+1/4 ²…1/9 ²
chứng tỏ 8/9>A>2/5

0 bình luận về “-8/9+1/9.2/9+1/9.7/9 A=1/ 2 ²+1/3 ²+1/4 ²…1/9 ² chứng tỏ 8/9>A>2/5”

  1. `-8/9+ 1/9 . 2/9 + 1/9 . 7/9`

    `= -8/9 + 1/9( 2/9+ 7/9)`

    `= -8/9 + 1/9 .1`

    `= -8/9 + 1/9`

    `= -7/9`

    Ta có: `1/2^2 < 1/1.2 ; 1/3^2 < 1/2.3; ….. ; 1/9^2 < 1/8.9`

    `=> 1/2^2 + 1/3^2 + 1/4^2+………+ 1/9^2 < 1/1.2 + 1/2.3 + …. + 1/8.9`

    `=> A < 1/1 -1/2 + 1/2 -1/3 +….+ 1/8- 1/9`

    `=>A  < 1/1 -1/9`

    `=> A < 8/9 (1)`

    Lại có: `1/2^2 > 1/2.3 + 1/3^2 > 1/3.4 ; ………; 1/9^2  > 1/9.10`

    `=> 1/2^2 + 1/3^2 + 1/4^2+………+ 1/9^2 > 1/2.3 + 1/3.4 +…+ 1/9.10`

    `=> A > 1/2 -1/3 + 1/3 -1/4 +….+ 1/9-1/10`

    `=> A  > 1/2 -1/10 = 2/5` `(2)`

    Từ `(1)` và` (2) “=> 8/9 > A > 2/5`

    Vậy` 8/9 > A > 2/5`

     

    Bình luận
  2. $A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\cdots+\dfrac{1}{9^2}\\ A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\cdots+\dfrac{1}{9.10}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\cdots+\dfrac{1}{9}-\dfrac{1}{10}\\ =\dfrac{1}{2}-\dfrac{1}{10}\\ =\dfrac{2}{5}\\ A<\dfrac{1}{1.2}+\dfrac{1}{2.3}+\cdots+\dfrac{1}{8.9}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots+\dfrac{1}{8}-\dfrac{1}{9}\\ =\dfrac{1}{1}-\dfrac{1}{9}\\ =\dfrac{8}{9}$

    Vậy $\dfrac{8}{9}>A>\dfrac{2}{5}$

    Bình luận

Viết một bình luận