A =(x/x-1-x+1/x): (x/x+ 1- x-1/x) a) tìm đk xác định b)RG C)Tìm x nguyên để A nguyên chi tiết dùm mk nha các bạn ơi 21/08/2021 Bởi Alice A =(x/x-1-x+1/x): (x/x+ 1- x-1/x) a) tìm đk xác định b)RG C)Tìm x nguyên để A nguyên chi tiết dùm mk nha các bạn ơi
a, Để A xác định $⇔\begin{cases}x-1\neq0\\x\neq0\\x+1\neq0\end{cases}$ $⇔\begin{cases}x\neq1\\x\neq0\\x\neq-1\end{cases}$ $⇒\begin{cases}x\neq\pm1\\x\neq0\end{cases}$ Vậy để A xác định thì $x\neq\pm1,x\neq0$. b, $A=(\dfrac{x}{x-1}-\dfrac{x+1}{x}):(\dfrac{x}{x+1}-\dfrac{x-1}{x})$ $(x\neq\pm1,x\neq0)$ $A=(\dfrac{x^2}{x(x-1)}-\dfrac{(x-1)(x+1)}{x(x-1)}):(\dfrac{x^2}{x(x+1)}-\dfrac{(x-1)(x+1)}{x(x+1)})$ $A=\dfrac{x^2-x^2+1}{x(x-1)}:\dfrac{x^2-x^2+1}{x(x+1)}$ $A=\dfrac{1}{x(x-1)}\cdot\dfrac{x(x+1)}{1}$ $A=\dfrac{x+1}{x-1}$ Vậy $A=\dfrac{x+1}{x-1}$ với $x\neq\pm1,x\neq0$ c, $A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}$ Để A nguyên $\dfrac{2}{x-1}$ nguyên `⇒x-1∈Ư(2)={±1;±2}`. · $x-1=1⇒x=2(tm)$ · $x-1=-1⇒x=0(ktm)$ · $x-1=2⇒x=3(tm)$ · $x-1=-2⇒x=-1(ktm)$ Vậy để A nguyên thì `x\in{2;3}`. Bình luận
Đáp án: $\begin{array}{l}A = \left( {\frac{x}{{x – 1}} – \frac{{x + 1}}{x}} \right):\left( {\frac{x}{{x + 1}} – \frac{{x – 1}}{x}} \right)\\a)Đkxđ:\left\{ \begin{array}{l}x – 1 \ne 0\\x \ne 0\\x + 1 \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne 0\\x \ne – 1\end{array} \right.\\b)A = \left( {\frac{x}{{x – 1}} – \frac{{x + 1}}{x}} \right):\left( {\frac{x}{{x + 1}} – \frac{{x – 1}}{x}} \right)\\ = \frac{{{x^2} – \left( {x – 1} \right)\left( {x + 1} \right)}}{{x\left( {x – 1} \right)}}:\frac{{{x^2} – \left( {x – 1} \right)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\\ = \frac{{{x^2} – {x^2} + 1}}{{x\left( {x – 1} \right)}}.\frac{{x\left( {x + 1} \right)}}{{{x^2} – {x^2} + 1}}\\ = \frac{{x + 1}}{{x – 1}}\\c)Đkxđ:x \ne – 1;x \ne 0;x \ne 1\\A = \frac{{x + 1}}{{x – 1}} = \frac{{x – 1 + 2}}{{x – 1}} = 1 + \frac{2}{{x – 1}}\\A \in Z \Rightarrow \frac{2}{{x – 1}} \in Z\\ \Rightarrow 2 \vdots \left( {x – 1} \right)\\ \Rightarrow \left( {x – 1} \right) \in Ư\left( 2 \right) = {\rm{\{ }} – 2; – 1;1;2\} \\ \Rightarrow x \in {\rm{\{ }} – 1;0;2;3\} \\Mà:\,x \ne – 1;x \ne 1;x \ne 0\\ \Rightarrow x \in {\rm{\{ }}0;2;3\} \end{array}$ Bình luận
a, Để A xác định
$⇔\begin{cases}x-1\neq0\\x\neq0\\x+1\neq0\end{cases}$
$⇔\begin{cases}x\neq1\\x\neq0\\x\neq-1\end{cases}$
$⇒\begin{cases}x\neq\pm1\\x\neq0\end{cases}$
Vậy để A xác định thì $x\neq\pm1,x\neq0$.
b, $A=(\dfrac{x}{x-1}-\dfrac{x+1}{x}):(\dfrac{x}{x+1}-\dfrac{x-1}{x})$ $(x\neq\pm1,x\neq0)$
$A=(\dfrac{x^2}{x(x-1)}-\dfrac{(x-1)(x+1)}{x(x-1)}):(\dfrac{x^2}{x(x+1)}-\dfrac{(x-1)(x+1)}{x(x+1)})$
$A=\dfrac{x^2-x^2+1}{x(x-1)}:\dfrac{x^2-x^2+1}{x(x+1)}$
$A=\dfrac{1}{x(x-1)}\cdot\dfrac{x(x+1)}{1}$
$A=\dfrac{x+1}{x-1}$
Vậy $A=\dfrac{x+1}{x-1}$ với $x\neq\pm1,x\neq0$
c, $A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}$
Để A nguyên
$\dfrac{2}{x-1}$ nguyên
`⇒x-1∈Ư(2)={±1;±2}`.
· $x-1=1⇒x=2(tm)$
· $x-1=-1⇒x=0(ktm)$
· $x-1=2⇒x=3(tm)$
· $x-1=-2⇒x=-1(ktm)$
Vậy để A nguyên thì `x\in{2;3}`.
Đáp án:
$\begin{array}{l}
A = \left( {\frac{x}{{x – 1}} – \frac{{x + 1}}{x}} \right):\left( {\frac{x}{{x + 1}} – \frac{{x – 1}}{x}} \right)\\
a)Đkxđ:\left\{ \begin{array}{l}
x – 1 \ne 0\\
x \ne 0\\
x + 1 \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ne 1\\
x \ne 0\\
x \ne – 1
\end{array} \right.\\
b)A = \left( {\frac{x}{{x – 1}} – \frac{{x + 1}}{x}} \right):\left( {\frac{x}{{x + 1}} – \frac{{x – 1}}{x}} \right)\\
= \frac{{{x^2} – \left( {x – 1} \right)\left( {x + 1} \right)}}{{x\left( {x – 1} \right)}}:\frac{{{x^2} – \left( {x – 1} \right)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\\
= \frac{{{x^2} – {x^2} + 1}}{{x\left( {x – 1} \right)}}.\frac{{x\left( {x + 1} \right)}}{{{x^2} – {x^2} + 1}}\\
= \frac{{x + 1}}{{x – 1}}\\
c)Đkxđ:x \ne – 1;x \ne 0;x \ne 1\\
A = \frac{{x + 1}}{{x – 1}} = \frac{{x – 1 + 2}}{{x – 1}} = 1 + \frac{2}{{x – 1}}\\
A \in Z \Rightarrow \frac{2}{{x – 1}} \in Z\\
\Rightarrow 2 \vdots \left( {x – 1} \right)\\
\Rightarrow \left( {x – 1} \right) \in Ư\left( 2 \right) = {\rm{\{ }} – 2; – 1;1;2\} \\
\Rightarrow x \in {\rm{\{ }} – 1;0;2;3\} \\
Mà:\,x \ne – 1;x \ne 1;x \ne 0\\
\Rightarrow x \in {\rm{\{ }}0;2;3\}
\end{array}$