A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +…+1/1+2+3+4+…+10 12/10/2021 Bởi Skylar A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +…+1/1+2+3+4+…+10
Đáp án: $ A=\dfrac9{11}$ Giải thích các bước giải: Ta có: $S=1+2+3+…+n$ $\to S=n+(n-1)+(n-2)+…+1$ $\to 2S=(n+1)+(n-1+2)+(n-2+3)+..+(n+1)$ có $n$ số hạng $\to 2S=(n+1)+(n+1)+(n+1)+…+(n+1)$ $\to 2S=n(n+1)$ $\to S=\dfrac12n(n+1)$ $\to 1+2+3+…+n=\dfrac12n(n+1)$ $\to \dfrac1{1+2+3+..+n}=\dfrac{2}{n(n+1)}=2\cdot\dfrac{1}{n(n+1)}=2\cdot\dfrac{n+1-n}{n(n+1)}=2(\dfrac1n-\dfrac1{n+1})$ Áp dụng ta được : $A=2(\dfrac12-\dfrac13)+2(\dfrac13-\dfrac14)+2(\dfrac14-\dfrac15)+..+2(\dfrac1{10}-\dfrac1{11})$ $\to A=2(\dfrac12-\dfrac13+\dfrac13-\dfrac14+\dfrac14-\dfrac15+…+\dfrac1{10}-\dfrac1{11}))$ $\to A=2\cdot (\dfrac12-\dfrac1{11})$ $\to A=\dfrac9{11}$ Bình luận
Đáp án: $ A=\dfrac9{11}$
Giải thích các bước giải:
Ta có:
$S=1+2+3+…+n$
$\to S=n+(n-1)+(n-2)+…+1$
$\to 2S=(n+1)+(n-1+2)+(n-2+3)+..+(n+1)$ có $n$ số hạng
$\to 2S=(n+1)+(n+1)+(n+1)+…+(n+1)$
$\to 2S=n(n+1)$
$\to S=\dfrac12n(n+1)$
$\to 1+2+3+…+n=\dfrac12n(n+1)$
$\to \dfrac1{1+2+3+..+n}=\dfrac{2}{n(n+1)}=2\cdot\dfrac{1}{n(n+1)}=2\cdot\dfrac{n+1-n}{n(n+1)}=2(\dfrac1n-\dfrac1{n+1})$
Áp dụng ta được :
$A=2(\dfrac12-\dfrac13)+2(\dfrac13-\dfrac14)+2(\dfrac14-\dfrac15)+..+2(\dfrac1{10}-\dfrac1{11})$
$\to A=2(\dfrac12-\dfrac13+\dfrac13-\dfrac14+\dfrac14-\dfrac15+…+\dfrac1{10}-\dfrac1{11}))$
$\to A=2\cdot (\dfrac12-\dfrac1{11})$
$\to A=\dfrac9{11}$