A=(1-√x/√x+1):(√x+3/√x-2+√x+2/3-√x+√x+2/x-5√x+ Mình ms thấy cs bạn hỏi câu nà mn giúp voi a 20/07/2021 Bởi Julia A=(1-√x/√x+1):(√x+3/√x-2+√x+2/3-√x+√x+2/x-5√x+ Mình ms thấy cs bạn hỏi câu nà mn giúp voi a
Đáp án: \(\dfrac{{\left( {1 – \sqrt x } \right)\left( {\sqrt x – 2} \right)}}{{1 + \sqrt x }}\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ge 0;x \ne \left\{ {4;9} \right\}\\A = \left( {\dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}} \right):\left( {\dfrac{{\sqrt x + 3}}{{\sqrt x – 2}} + \dfrac{{\sqrt x + 2}}{{3 – \sqrt x }} + \dfrac{{\sqrt x + 2}}{{x – 5\sqrt x + 6}}} \right)\\ = \dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}:\left[ {\dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x – 3} \right) – \left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right) + \sqrt x + 2}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 2} \right)}}} \right]\\ = \dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}.\dfrac{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 2} \right)}}{{x – 9 – x + 4 + \sqrt x + 2}}\\ = \dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}.\dfrac{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 2} \right)}}{{\sqrt x – 3}}\\ = \dfrac{{\left( {1 – \sqrt x } \right)\left( {\sqrt x – 2} \right)}}{{1 + \sqrt x }}\end{array}\) Bình luận
Đáp án:
\(\dfrac{{\left( {1 – \sqrt x } \right)\left( {\sqrt x – 2} \right)}}{{1 + \sqrt x }}\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ge 0;x \ne \left\{ {4;9} \right\}\\
A = \left( {\dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}} \right):\left( {\dfrac{{\sqrt x + 3}}{{\sqrt x – 2}} + \dfrac{{\sqrt x + 2}}{{3 – \sqrt x }} + \dfrac{{\sqrt x + 2}}{{x – 5\sqrt x + 6}}} \right)\\
= \dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}:\left[ {\dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x – 3} \right) – \left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right) + \sqrt x + 2}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 2} \right)}}} \right]\\
= \dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}.\dfrac{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 2} \right)}}{{x – 9 – x + 4 + \sqrt x + 2}}\\
= \dfrac{{1 – \sqrt x }}{{1 + \sqrt x }}.\dfrac{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 2} \right)}}{{\sqrt x – 3}}\\
= \dfrac{{\left( {1 – \sqrt x } \right)\left( {\sqrt x – 2} \right)}}{{1 + \sqrt x }}
\end{array}\)