a, (1-x)/(x+1 )+3=(2x+3)/(x+1) b, ((x+2)^2)/(2x-3)-1=(x^2+10)/(2x-3) c, (5x-2)/(2-2x)+(2x-1)/2=1- (x^2+x-3)/(1-x) d, (5-2x)/3 + ((x-1)(x+1))/(3x-1)=

a, (1-x)/(x+1 )+3=(2x+3)/(x+1)
b, ((x+2)^2)/(2x-3)-1=(x^2+10)/(2x-3)
c, (5x-2)/(2-2x)+(2x-1)/2=1- (x^2+x-3)/(1-x)
d, (5-2x)/3 + ((x-1)(x+1))/(3x-1)= ((x+2)(1-3x))/(9x-3)

0 bình luận về “a, (1-x)/(x+1 )+3=(2x+3)/(x+1) b, ((x+2)^2)/(2x-3)-1=(x^2+10)/(2x-3) c, (5x-2)/(2-2x)+(2x-1)/2=1- (x^2+x-3)/(1-x) d, (5-2x)/3 + ((x-1)(x+1))/(3x-1)=”

  1. a)$\frac{1-x}{x+1}$ +3=$\frac{2x+3}{x+1}$    ĐKXĐ:x $\neq$ -1
    ⇔$\frac{1-x}{x+1}$ +$\frac{3x+3}{x+1}$=$\frac{2x+3}{x+1}$
    ⇔1-x+3x+3=2x+3
    ⇔2x+4-2x-3=0
    ⇔1=0(vô lí)

    Vậy S= rỗng
    b)
    $\frac{(x+2)^2}{2x-3}$-1= $\frac{x^2+10}{2x-3}$         ĐKXĐ: x $\neq$ $\frac{3}{2}$ 
    ⇔$\frac{x^2-2x+4}{2x-3}$-$\frac{2x-3}{2x-3}$= $\frac{x^2+10}{2x-3}$
    ⇔x^2-2x+4-2x+3=x^2+10
    ⇔x^2-4x+7-x^2-10=0
    ⇔-4x-3=0
    ⇔-4x=3
    ⇔x=-$\frac{3}{4}$  (TMĐK)
    Vậy S ={-$\frac{3}{4}$ }
    c)$\frac{5x-2}{2-2x}$ +$\frac{2x-1}{2}$= 1-$\frac{x^2+x-3}{1-x}$    ĐKXĐ:x$\neq$ 1
    ⇔$\frac{5x-2}{2(1-x)}$ +$\frac{(2x-1)(1-x)}{2(1-x)}$= $\frac{2(1-x)}{2(1-x)}$-$\frac{2(x^2+x-3)}{2(1-x)}$
    ⇔5x-2+(2x-1)(1-x)=2(1-x)-2(x^2+x-3)
    ⇔5x-2+2x-2x^2-1+x=2-2x-2x^2-2x+6
    ⇔8x-2x^2-3-2+2x+2x^2+2x-6=0
    ⇔12x-11=0
    ⇔x=$\frac{11}{12}$ (TMĐK)
    Vậy S ={ $\frac{11}{12}$ }
    d)$\frac{5-2x}{3}$+ $\frac{(x-1)(x+1)}{3x-1}$= $\frac{(x+2)(1-3x)}{9x-3}$  ĐKXĐ: x$\neq$ $\frac{1}{3}$ 
    ⇔$\frac{(5-2x)(3x-1)}{3(3x-1)}$+ $\frac{3(x-1)(x+1)}{3(3x-1)}$= $\frac{(x+2)(1-3x)}{3(3x-1)}$
    ⇔(5x-2)(3x-1)+3(x-1)(x+1)=(x+2)(1-3x)
    ⇔15x^2-5x-6x+2+3x^2-3=x-3x^2+2-6x
    ⇔18x^2-11x-1-x+3x^2-2+6x=0
    ⇔21x^2-6x-3=0
    ⇔3(7x^2-2x-1)=0
    ⇔7x^2-2x-1=0
    ⇔(đang nghĩ ;-; )

    Bình luận

Viết một bình luận