a, (x-1)^2-(x-1)(x+1)=3x-5 b,x/x+11+3/x-12=-12x+33/(x+11)(x-11) 22/07/2021 Bởi Gianna a, (x-1)^2-(x-1)(x+1)=3x-5 b,x/x+11+3/x-12=-12x+33/(x+11)(x-11)
Đáp án: `a)x=7/5` `b)“S={0;-3}` Giải thích các bước giải: `a)(x-1)^2-(x-1)(x+1)=3x-5` `⇔(x-1)(x-1-x-1)=3x-5` `⇔(x-1).(-2)=3x-5` `⇔-2x+2=3x-5` `⇔-5x=-7` `⇔ x=7/5` `Vậy` `S={7/5}` `b)x/(x+11)+3/(x-12)=(-12x+33)/((x+11)(x-12))`(`ĐKXĐ`:`x`$\neq$`-11`;`x`$\neq$`12`) `⇔(x(x-12))/((x+11)(x-12))+(3(x+11))/((x+11)(x-12))=(-12x+33)/((x+11)(x-12))` `⇒x^2-12x+3x+33=-12x+33` `⇔x^2-9x+33=-12x+33` `⇔x^2+3x=0` `⇔x(x+3)=0` `1)x=0(tm)` `2)x+3=0⇔x=-3(tm)` `Vậy` `S={0;-3}` Bình luận
-Đáp án+Giải thích các bước giải: `a) (x-1)^2-(x-1)(x+1)=3x-5` `⇔ (x-1)(x-1-x-1)=3x-5` `⇔ -2.(x-1) =3x-5` `⇔ -2x+2=3x-5` `⇔ -5x = -7` `⇔ x = 7/5` Vậy`S={7/5}` `b) x/(x+11)+3/(x-12)=(-12x+33)/((x+11)(x-12)) (ĐKXĐ:x\ne-11, x\ne 12)` `⇔ (x(x-12))/((x+11)(x-12))+(3(x+11))/((x+11)(x-12))=(-12x+33)/((x+11)(x-12))` `⇒ x^2 – 12x +3x+33= -12x+33` `⇔ x^2 +3x=0` `⇔ x(x+3)=0` `⇔`\(\left[ \begin{matrix}x=0\\x+3=0\end{matrix} \right.\) `⇔`\(\left[ \begin{matrix}x=0(t/m)\\x=-3(t/m)\end{matrix} \right.\) Vậy `S={0; -3}` Bình luận
Đáp án:
`a)x=7/5`
`b)“S={0;-3}`
Giải thích các bước giải:
`a)(x-1)^2-(x-1)(x+1)=3x-5`
`⇔(x-1)(x-1-x-1)=3x-5`
`⇔(x-1).(-2)=3x-5`
`⇔-2x+2=3x-5`
`⇔-5x=-7`
`⇔ x=7/5`
`Vậy` `S={7/5}`
`b)x/(x+11)+3/(x-12)=(-12x+33)/((x+11)(x-12))`(`ĐKXĐ`:`x`$\neq$`-11`;`x`$\neq$`12`)
`⇔(x(x-12))/((x+11)(x-12))+(3(x+11))/((x+11)(x-12))=(-12x+33)/((x+11)(x-12))`
`⇒x^2-12x+3x+33=-12x+33`
`⇔x^2-9x+33=-12x+33`
`⇔x^2+3x=0`
`⇔x(x+3)=0`
`1)x=0(tm)`
`2)x+3=0⇔x=-3(tm)`
`Vậy` `S={0;-3}`
-Đáp án+Giải thích các bước giải:
`a) (x-1)^2-(x-1)(x+1)=3x-5`
`⇔ (x-1)(x-1-x-1)=3x-5`
`⇔ -2.(x-1) =3x-5`
`⇔ -2x+2=3x-5`
`⇔ -5x = -7`
`⇔ x = 7/5`
Vậy`S={7/5}`
`b) x/(x+11)+3/(x-12)=(-12x+33)/((x+11)(x-12)) (ĐKXĐ:x\ne-11, x\ne 12)`
`⇔ (x(x-12))/((x+11)(x-12))+(3(x+11))/((x+11)(x-12))=(-12x+33)/((x+11)(x-12))`
`⇒ x^2 – 12x +3x+33= -12x+33`
`⇔ x^2 +3x=0`
`⇔ x(x+3)=0`
`⇔`\(\left[ \begin{matrix}x=0\\x+3=0\end{matrix} \right.\)
`⇔`\(\left[ \begin{matrix}x=0(t/m)\\x=-3(t/m)\end{matrix} \right.\)
Vậy `S={0; -3}`