a)1/x+2 + 2/2-x + x/x^2-4 b) 3x^2+5x+1/x^3-1 – 1-x/x^2+x+1 – 3/x-1 quy đồg 25/08/2021 Bởi Madeline a)1/x+2 + 2/2-x + x/x^2-4 b) 3x^2+5x+1/x^3-1 – 1-x/x^2+x+1 – 3/x-1 quy đồg
Đáp án: $\begin{array}{l}a)\,\,{\frac{{ – 2}}{{x – 2}}}\\b)\,\,\,\frac{{x + 1}}{{{x^2} + x + 1}}\end{array}$ Giải thích các bước giải: \(\begin{array}{*{20}{l}}{a){\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{1}{{x + 2}} + \frac{2}{{2 – x}} + \frac{x}{{{x^2} – 4}}}\\{\,\,\, = \frac{1}{{x + 2}} – \frac{2}{{x – 2}} + \frac{x}{{\left( {x – 2} \right)\left( {x + 2} \right)}}}\\{{\rm{}} = \frac{{x – 2 – 2\left( {x + 2} \right) + x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = \frac{{x – 2x – 2x – 4 + x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}}\\{{\rm{}} = \frac{{ – 2\left( {x + 2} \right)}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = \frac{{ – 2}}{{x – 2}}.}\\{b){\kern 1pt} {\kern 1pt} \frac{{3{x^2} + 5x + 1}}{{{x^3} – 1}} – \frac{{1 – x}}{{{x^2} + x + 1}} – \frac{3}{{x – 1}}}\\{n{\rm{}} = \frac{{3{x^2} + 5x + 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{{x – 1}}{{{x^2} + x + 1}} – \frac{3}{{x – 1}}}\\{n{\rm{}} = \frac{{3{x^2} + 5x + 1 + {{\left( {x – 1} \right)}^2} – 3\left( {{x^2} + x + 1} \right)}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}}\\{n{\rm{}} = \frac{{3{x^2} + 5x + 1 + {x^2} – 2x + 1 – 3{x^2} – 3x – 3}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}}\\{n{\rm{}} = \frac{{{x^2} – 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}}\\{n{\rm{}} = \frac{{x + 1}}{{{x^2} + x + 1}}.}\end{array}\) Bình luận
Đáp án:
$\begin{array}{l}
a)\,\,{\frac{{ – 2}}{{x – 2}}}\\
b)\,\,\,\frac{{x + 1}}{{{x^2} + x + 1}}
\end{array}$
Giải thích các bước giải:
\(\begin{array}{*{20}{l}}
{a){\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{1}{{x + 2}} + \frac{2}{{2 – x}} + \frac{x}{{{x^2} – 4}}}\\
{\,\,\, = \frac{1}{{x + 2}} – \frac{2}{{x – 2}} + \frac{x}{{\left( {x – 2} \right)\left( {x + 2} \right)}}}\\
{{\rm{}} = \frac{{x – 2 – 2\left( {x + 2} \right) + x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = \frac{{x – 2x – 2x – 4 + x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}}\\
{{\rm{}} = \frac{{ – 2\left( {x + 2} \right)}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = \frac{{ – 2}}{{x – 2}}.}\\
{b){\kern 1pt} {\kern 1pt} \frac{{3{x^2} + 5x + 1}}{{{x^3} – 1}} – \frac{{1 – x}}{{{x^2} + x + 1}} – \frac{3}{{x – 1}}}\\
{n{\rm{}} = \frac{{3{x^2} + 5x + 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{{x – 1}}{{{x^2} + x + 1}} – \frac{3}{{x – 1}}}\\
{n{\rm{}} = \frac{{3{x^2} + 5x + 1 + {{\left( {x – 1} \right)}^2} – 3\left( {{x^2} + x + 1} \right)}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}}\\
{n{\rm{}} = \frac{{3{x^2} + 5x + 1 + {x^2} – 2x + 1 – 3{x^2} – 3x – 3}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}}\\
{n{\rm{}} = \frac{{{x^2} – 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}}\\
{n{\rm{}} = \frac{{x + 1}}{{{x^2} + x + 1}}.}
\end{array}\)