a) 1/4.x-1/3 = -5/9
b) 11/12-(2/5-x) = 3/4
c) 2007,5 -|x-1,5|= 0
d) (x-2)^2012 + |y^2 -9|^2014 = 0
e) 45-x/1963 + 40-x/1968 + 35-x/1973 + 30-x/1978 + 4 = 0
f) x – 20/11.13 – 20/13.15 – 20/1517 – … 20/53.55 = 3/11
a) 1/4.x-1/3 = -5/9
b) 11/12-(2/5-x) = 3/4
c) 2007,5 -|x-1,5|= 0
d) (x-2)^2012 + |y^2 -9|^2014 = 0
e) 45-x/1963 + 40-x/1968 + 35-x/1973 + 30-x/1978 + 4 = 0
f) x – 20/11.13 – 20/13.15 – 20/1517 – … 20/53.55 = 3/11
Đáp án:
$\begin{array}{l}
a)\dfrac{1}{4}x – \dfrac{1}{3} = – \dfrac{5}{9}\\
\Rightarrow \dfrac{1}{4}x = – \dfrac{5}{9} + \dfrac{1}{3}\\
\Rightarrow \dfrac{1}{4}x = – \dfrac{5}{9} + \dfrac{3}{9} = – \dfrac{2}{9}\\
\Rightarrow x = \dfrac{{ – 2}}{9}:\dfrac{1}{4}\\
\Rightarrow x = \dfrac{{ – 8}}{9}\\
b)\dfrac{{11}}{{12}} – \left( {\dfrac{2}{5} – x} \right) = \dfrac{3}{4}\\
\Rightarrow \dfrac{{11}}{{12}} – \dfrac{2}{5} + x = \dfrac{3}{4}\\
\Rightarrow x = \dfrac{3}{4} – \dfrac{{11}}{{12}} + \dfrac{2}{5}\\
\Rightarrow x = \dfrac{{3.15 – 5.11 + 2.12}}{{60}}\\
\Rightarrow x = \dfrac{{14}}{{60}} = \dfrac{7}{{30}}\\
c)2007,5 – \left| {x – 1,5} \right| = 0\\
\Rightarrow \left| {x – 1,5} \right| = 2007,5\\
\Rightarrow \left[ \begin{array}{l}
x – 1,5 = 2007,5\\
x – 1,5 = – 2007,5
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 2009\\
x = – 2006
\end{array} \right.\\
d){\left( {x – 2} \right)^{2012}} + {\left| {{y^2} – 9} \right|^{2014}} = 0\\
\Rightarrow \left\{ \begin{array}{l}
x – 2 = 0\\
{y^2} – 9 = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = 2\\
{y^2} = 9
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = 2\\
y = 3\\
y = – 3
\end{array} \right.\\
e)\dfrac{{45 – x}}{{1963}} + \dfrac{{40 – x}}{{1968}} + \dfrac{{35 – x}}{{1973}} + \dfrac{{30 – x}}{{1978}} + 4 = 0\\
\Rightarrow \dfrac{{45 – x}}{{1963}} + 1 + \dfrac{{40 – x}}{{1968}} + 1\\
+ \dfrac{{35 – x}}{{1973}} + 1 + \dfrac{{30 – x}}{{1978}} + 1 = 0\\
\Rightarrow \dfrac{{45 – x + 1963}}{{1963}} + \dfrac{{40 – x + 1968}}{{1968}}\\
+ \dfrac{{35 – x + 1973}}{{1973}} + \dfrac{{30 – x + 1978}}{{1978}} = 0\\
\Rightarrow \dfrac{{2008 – x}}{{1963}} + \dfrac{{2008 – x}}{{1968}} + \dfrac{{2008 – x}}{{1973}} + \dfrac{{2008 – x}}{{1978}} = 0\\
\Rightarrow \left( {2008 – x} \right).\left( {\dfrac{1}{{1963}} + \dfrac{1}{{1968}} + \dfrac{1}{{1973}} + \dfrac{1}{{1978}}} \right) = 0\\
\Rightarrow x = 2008\\
f)x – \dfrac{{20}}{{11.13}} – \dfrac{{20}}{{13.15}} – \dfrac{{20}}{{15.17}} – …\dfrac{{20}}{{53.55}} = \dfrac{3}{{11}}\\
\Rightarrow x – 10.\left( {\dfrac{2}{{11.13}} + \dfrac{2}{{13.15}} + … + \dfrac{1}{{53.55}}} \right) = \dfrac{3}{{11}}\\
\Rightarrow x – 10.\left( {\dfrac{1}{{11}} – \dfrac{1}{{55}}} \right) = \dfrac{3}{{11}}\\
\Rightarrow x – 10.\dfrac{4}{{55}} = \dfrac{3}{{11}}\\
\Rightarrow x = \dfrac{3}{{11}} + \dfrac{{40}}{{55}} = \dfrac{{55}}{{55}} = 1
\end{array}$