a,(x – 1/4 )^2 – 25/64 = 0 b,(x- 1/4)^2 + 17/64 = 21/32

a,(x – 1/4 )^2 – 25/64 = 0
b,(x- 1/4)^2 + 17/64 = 21/32

0 bình luận về “a,(x – 1/4 )^2 – 25/64 = 0 b,(x- 1/4)^2 + 17/64 = 21/32”

  1. Đáp án: a.$x\in\{-\dfrac38,\dfrac78\}$

                    b.$x\in\{-\dfrac38,\dfrac78\}$

    Giải thích các bước giải:

    a.$(x-\dfrac14)^2-\dfrac{25}{64}=0$

    $\to (x-\dfrac14)^2=\dfrac{25}{64}$

    $\to x-\dfrac14=\dfrac58\to x=\dfrac78$

    Hoặc $x-\dfrac14=-\dfrac58\to x=-\dfrac38$

    b.$(x-\dfrac14)^2+\dfrac{17}{64}=\dfrac{21}{32}$

    $\to (x-\dfrac14)^2=\dfrac{25}{64}$

    $\to x-\dfrac14=\dfrac58\to x=\dfrac78$

    Hoặc $x-\dfrac14=-\dfrac58\to x=-\dfrac38$

    Bình luận
  2. $a,$ $(x – \dfrac{1}{4})^2 – \dfrac{25}{64}=0$

    $⇔$  $(x – \dfrac{1}{4})^2 = \dfrac{25}{64}$

    $⇔$ $x – \dfrac{1}{4}$ = (±$\dfrac{5}{8}$)

    $⇒$ \(\left[ \begin{array}{l}x=\dfrac{5}{8}+\dfrac{1}{4}\\x=\dfrac{-5}{8}+\dfrac{1}{4}\end{array} \right.\) 

    $⇔$ \(\left[ \begin{array}{l}x=\dfrac{7}{8}\\x=\dfrac{-3}{8}\end{array} \right.\) 

     Vậy $x$ ∈ {$\dfrac{7}{8};\dfrac{-3}{8}$}

    $b,$ $(x – \dfrac{1}{4})^2 + \dfrac{17}{64}=\dfrac{21}{32}$

    $⇔$ $(x – \dfrac{1}{4})^2 = \dfrac{21}{32} – \dfrac{17}{64}$

    $⇔$ $(x – \dfrac{1}{4})^2 = \dfrac{25}{64}$

    $⇔$ $x – \dfrac{1}{4}$ = (±$\dfrac{5}{8}$)

    $⇒$ \(\left[ \begin{array}{l}x=\dfrac{5}{8}+\dfrac{1}{4}\\x=\dfrac{-5}{8}+\dfrac{1}{4}\end{array} \right.\) 

    $⇔$ \(\left[ \begin{array}{l}x=\dfrac{7}{8}\\x=\dfrac{-3}{8}\end{array} \right.\) 

     Vậy $x$ ∈ {$\dfrac{7}{8};\dfrac{-3}{8}$}

    Bình luận

Viết một bình luận