A= 10^11 – 1/10612 – 1 ; B= 10^10 + 1/10^11 + 1 SO SÁNH A VÀ B 29/08/2021 Bởi Ariana A= 10^11 – 1/10612 – 1 ; B= 10^10 + 1/10^11 + 1 SO SÁNH A VÀ B
Đáp án+Giải thích các bước giải: $A=\dfrac{10^{11}-1}{10^{12}-1}\\=>10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\B=\dfrac{10^{10}+1}{10^{11}+1}\\=>10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\Vì,10^{12}-1>10^{11}+1\\=>\dfrac{9}{10^{12}-1}<\dfrac{9}{10^{11}+1}\\=>1-\dfrac{9}{10^{12}-1}<1+\dfrac{9}{10^{11}+1}\\=>10A<10B\\=>A<B$ Bình luận
Tham khảo :
Đáp án+Giải thích các bước giải:
$A=\dfrac{10^{11}-1}{10^{12}-1}\\=>10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\B=\dfrac{10^{10}+1}{10^{11}+1}\\=>10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\Vì,10^{12}-1>10^{11}+1\\=>\dfrac{9}{10^{12}-1}<\dfrac{9}{10^{11}+1}\\=>1-\dfrac{9}{10^{12}-1}<1+\dfrac{9}{10^{11}+1}\\=>10A<10B\\=>A<B$