a) |2(x+1)-(-5)|=|-2017| b)2(2x-1)^2 + |-2016|=|2066| c)2{ 3+2[(3-2(x-1))^2 +1]}=14

a) |2(x+1)-(-5)|=|-2017|
b)2(2x-1)^2 + |-2016|=|2066|
c)2{ 3+2[(3-2(x-1))^2 +1]}=14

0 bình luận về “a) |2(x+1)-(-5)|=|-2017| b)2(2x-1)^2 + |-2016|=|2066| c)2{ 3+2[(3-2(x-1))^2 +1]}=14”

  1. Đáp án:

    ↓↓↓

    Giải thích các bước giải:

    a) |2(x+1)-(-5)|=|-2017|

    |2(x+1)+5|= 2017

    \(\left[ \begin{array}{l}2(x+1)+5 = 2017\\2(x+1)+5 = -2017\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}2(x+1) = 2012\\2(x+1) = -2022\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x+1 = 1006\\x+1 = -1011\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x = 1005\\x = -1012\end{array} \right.\)

    b) 2(2x-1)² + |-2016|=|2066| 

       `2(2x-1)² + 2016 = 2066`

                   `2(2x-1)² = 2066-2016`

                   `2(2x-1)² = 50`

                      `(2x-1)² = 25`

                      `(2x+1)² = (±5)²`

    ⇔ \(\left[ \begin{array}{l}2x-1 = 5\\2x-1 = -5\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}2x = 6\\2x-1 = -4\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x = 3\\x = -2\end{array} \right.\)

    c) `2{ 3+2[(3-2(x-1))²+1]}  = 14`

        `2{ 3+2[(3-2x+2)²+1} = 14`

        `2{ 3+2[(5-2x)²+1} = 14`

       `2[ 3+2(5-2x)²+2] = 14`

       `2[5+2(5-2x)²] =14`

      `10+4(5-2x)² = 14`

              `4(5-2x)² = 14-10`

              `4(5-2x)² = 4`

                 `  (5-2x)² = 1`

                `(5-2x)² = (±1)²`

    ⇔ \(\left[ \begin{array}{l}5-2x = 1\\5-2x = -1\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}-2x = -4\\-2x = -6\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x = 2 \\x = 3\end{array} \right.\) 

    Bình luận

Viết một bình luận