a,(2x+1) mũ2-4(x+2)mux2=9 b,(3x-1) mũ2+2(x+3) mũ2+11(x+1)(1-x)=6 c,(x+1) mũ3-x mũ2(x+3)=2 Tìm x

a,(2x+1) mũ2-4(x+2)mux2=9
b,(3x-1) mũ2+2(x+3) mũ2+11(x+1)(1-x)=6
c,(x+1) mũ3-x mũ2(x+3)=2
Tìm x

0 bình luận về “a,(2x+1) mũ2-4(x+2)mux2=9 b,(3x-1) mũ2+2(x+3) mũ2+11(x+1)(1-x)=6 c,(x+1) mũ3-x mũ2(x+3)=2 Tìm x”

  1. Đáp án:

    $a, (2x + 1)² – 4(x + 2)² = 9$

    $⇔ 4x² + 4x + 1 – 4(x² + 4x + 4) = 9$

    $⇔ 4x² + 4x + 1 – 4x² – 16x – 16 – 9  = 0$

    $⇔ -12x – 24 = 0$

    $⇔ -12x = 24$

    $⇔      x = – 2$

    $ b, (3x – 1)² + 2(x + 3)² + 11(x + 1)(1 – x) = 6$
    $⇔ 9x² – 6x + 1 + 2(x² + 6x + 9) + 11(1 – x²) = 6$

    $⇔ 9x² – 6x + 1 + 2x² + 12x + 18 + 11 – 11x² – 6 = 0$

    $⇔ 6x + 24 = 0$

    $⇔ 6x = -24$

    $⇔   x = – 4$

    $c, (x + 1)³ – x²(x + 3) = 2$

    $⇔ x³ + 3x² + 3x + 1 – x³ -3x² – 2 = 0$

    $⇔ 3x – 1 = 0$

    $⇔   x =$ $\frac{1}{3}$ 

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     a)  ${(2x+1)}^2 -4{(x+2)}^2$ =9

         $ <=>  {(2x)}^2 + 2.2x.1+{1}^2 )-     4({x}^2+2.x. 2+{2}^2)  = 9 $

    <=> $ 4{x}^2+4x+1-4({x}^2 +4x+4) =9$

    <=> $4{x}^2+4x+1 – 4{x}^2 -16x -16=9 $

    <=>  -12x= 9+16-1

    <=> -12x=24

    <=> x = -2

    b) $ {3x-1)}^2 +2{(x+3)}^2+11(x+1)(1-x) =6$

    $<=> {(3x)}^2-2.3x.1+{1}^2 +2({x}^2+2.x. 3+{3}^2)+11(1+x) (1-x) =6$

    $<=> 9{x}^2-6x+1+2{x}^2+12x+18+11(1-{x}^2)=6$

    $ <=> 11{x}^2+6x+19+11-11{x}^2=6$

    $ <=>6x=6-19-11$

    <=>6x=-24 <=> x=-4

    c) đề chưa chính xác 

    Bình luận

Viết một bình luận