a,(2x+1) mũ2-4(x+2)mux2=9 b,(3x-1) mũ2+2(x+3) mũ2+11(x+1)(1-x)=6 c,(x+1) mũ3-x mũ2(x+3)=2 Tìm x 17/07/2021 Bởi Ariana a,(2x+1) mũ2-4(x+2)mux2=9 b,(3x-1) mũ2+2(x+3) mũ2+11(x+1)(1-x)=6 c,(x+1) mũ3-x mũ2(x+3)=2 Tìm x
Đáp án: $a, (2x + 1)² – 4(x + 2)² = 9$ $⇔ 4x² + 4x + 1 – 4(x² + 4x + 4) = 9$ $⇔ 4x² + 4x + 1 – 4x² – 16x – 16 – 9 = 0$ $⇔ -12x – 24 = 0$ $⇔ -12x = 24$ $⇔ x = – 2$ $ b, (3x – 1)² + 2(x + 3)² + 11(x + 1)(1 – x) = 6$$⇔ 9x² – 6x + 1 + 2(x² + 6x + 9) + 11(1 – x²) = 6$ $⇔ 9x² – 6x + 1 + 2x² + 12x + 18 + 11 – 11x² – 6 = 0$ $⇔ 6x + 24 = 0$ $⇔ 6x = -24$ $⇔ x = – 4$ $c, (x + 1)³ – x²(x + 3) = 2$ $⇔ x³ + 3x² + 3x + 1 – x³ -3x² – 2 = 0$ $⇔ 3x – 1 = 0$ $⇔ x =$ $\frac{1}{3}$ Bình luận
Đáp án: Giải thích các bước giải: a) ${(2x+1)}^2 -4{(x+2)}^2$ =9 $ <=> {(2x)}^2 + 2.2x.1+{1}^2 )- 4({x}^2+2.x. 2+{2}^2) = 9 $ <=> $ 4{x}^2+4x+1-4({x}^2 +4x+4) =9$ <=> $4{x}^2+4x+1 – 4{x}^2 -16x -16=9 $ <=> -12x= 9+16-1 <=> -12x=24 <=> x = -2 b) $ {3x-1)}^2 +2{(x+3)}^2+11(x+1)(1-x) =6$ $<=> {(3x)}^2-2.3x.1+{1}^2 +2({x}^2+2.x. 3+{3}^2)+11(1+x) (1-x) =6$ $<=> 9{x}^2-6x+1+2{x}^2+12x+18+11(1-{x}^2)=6$ $ <=> 11{x}^2+6x+19+11-11{x}^2=6$ $ <=>6x=6-19-11$ <=>6x=-24 <=> x=-4 c) đề chưa chính xác Bình luận
Đáp án:
$a, (2x + 1)² – 4(x + 2)² = 9$
$⇔ 4x² + 4x + 1 – 4(x² + 4x + 4) = 9$
$⇔ 4x² + 4x + 1 – 4x² – 16x – 16 – 9 = 0$
$⇔ -12x – 24 = 0$
$⇔ -12x = 24$
$⇔ x = – 2$
$ b, (3x – 1)² + 2(x + 3)² + 11(x + 1)(1 – x) = 6$
$⇔ 9x² – 6x + 1 + 2(x² + 6x + 9) + 11(1 – x²) = 6$
$⇔ 9x² – 6x + 1 + 2x² + 12x + 18 + 11 – 11x² – 6 = 0$
$⇔ 6x + 24 = 0$
$⇔ 6x = -24$
$⇔ x = – 4$
$c, (x + 1)³ – x²(x + 3) = 2$
$⇔ x³ + 3x² + 3x + 1 – x³ -3x² – 2 = 0$
$⇔ 3x – 1 = 0$
$⇔ x =$ $\frac{1}{3}$
Đáp án:
Giải thích các bước giải:
a) ${(2x+1)}^2 -4{(x+2)}^2$ =9
$ <=> {(2x)}^2 + 2.2x.1+{1}^2 )- 4({x}^2+2.x. 2+{2}^2) = 9 $
<=> $ 4{x}^2+4x+1-4({x}^2 +4x+4) =9$
<=> $4{x}^2+4x+1 – 4{x}^2 -16x -16=9 $
<=> -12x= 9+16-1
<=> -12x=24
<=> x = -2
b) $ {3x-1)}^2 +2{(x+3)}^2+11(x+1)(1-x) =6$
$<=> {(3x)}^2-2.3x.1+{1}^2 +2({x}^2+2.x. 3+{3}^2)+11(1+x) (1-x) =6$
$<=> 9{x}^2-6x+1+2{x}^2+12x+18+11(1-{x}^2)=6$
$ <=> 11{x}^2+6x+19+11-11{x}^2=6$
$ <=>6x=6-19-11$
<=>6x=-24 <=> x=-4
c) đề chưa chính xác