a) x^2 + 2x + 1 = 9 b) (2x – 5)^2 = (x + 2)^2 c) (x + 1)^2 = 4(x^2 + 2x + 1) 16/11/2021 Bởi Cora a) x^2 + 2x + 1 = 9 b) (2x – 5)^2 = (x + 2)^2 c) (x + 1)^2 = 4(x^2 + 2x + 1)
Đáp án+Giải thích các bước giải: `a,x^2+2x+1=9` `=>(x+1)^2=9` `=>(x-2)(x+4)=0` `=>x=2\or\x=-4` `b,(2x-5)^2=(x+2)^2` `=>(x-7)(3x-3)=0` `=>(x-7)(x-1)=0` `=>x=7\or\x=1` `c,(x+1)^2=4(x^2+2x+1)` `=>(x+1)^2=4(x+1)^2` `=>3(x+1)^2=0` `=>x+1=0` `=>x=-1` Bình luận
`a) x^2+2x+1=9` `<=> (x+1)^2=3^2` `<=> (x+1)^2-3^2=0` `<=> (x+1-3)(x+1+3)=0` `<=> (x-2)(x+4)=0` `<=>`\(\left[ \begin{array}{l}x-2=0\\x+4=0\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\) Vậy `x∈{2;-4}` `b) (2x-5)^2=(x+2)^2` `<=> (2x-5)^2-(x+2)^2=0` `<=> (2x-5-x-2)(2x-5+x+2)=0` `<=> (x-7)(3x-3)=0` `<=> 3(x-7)(x-1)=0` `<=>`\(\left[ \begin{array}{l}x-7=0\\x-1=0\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=7\\x=1\end{array} \right.\) Vậy `x∈{7;1}` `c) (x+1)^2=4(x^2+2x+1)` `<=> (x+1)^2=4(x+1)^2` `<=> 4(x+1)^2-(x+1)^2=0` `<=> 3(x+1)^2=0` `<=> x+1=0` `<=>x=-1` Vậy `x=-1` Bình luận
Đáp án+Giải thích các bước giải:
`a,x^2+2x+1=9`
`=>(x+1)^2=9`
`=>(x-2)(x+4)=0`
`=>x=2\or\x=-4`
`b,(2x-5)^2=(x+2)^2`
`=>(x-7)(3x-3)=0`
`=>(x-7)(x-1)=0`
`=>x=7\or\x=1`
`c,(x+1)^2=4(x^2+2x+1)`
`=>(x+1)^2=4(x+1)^2`
`=>3(x+1)^2=0`
`=>x+1=0`
`=>x=-1`
`a) x^2+2x+1=9`
`<=> (x+1)^2=3^2`
`<=> (x+1)^2-3^2=0`
`<=> (x+1-3)(x+1+3)=0`
`<=> (x-2)(x+4)=0`
`<=>`\(\left[ \begin{array}{l}x-2=0\\x+4=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\)
Vậy `x∈{2;-4}`
`b) (2x-5)^2=(x+2)^2`
`<=> (2x-5)^2-(x+2)^2=0`
`<=> (2x-5-x-2)(2x-5+x+2)=0`
`<=> (x-7)(3x-3)=0`
`<=> 3(x-7)(x-1)=0`
`<=>`\(\left[ \begin{array}{l}x-7=0\\x-1=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=7\\x=1\end{array} \right.\)
Vậy `x∈{7;1}`
`c) (x+1)^2=4(x^2+2x+1)`
`<=> (x+1)^2=4(x+1)^2`
`<=> 4(x+1)^2-(x+1)^2=0`
`<=> 3(x+1)^2=0`
`<=> x+1=0`
`<=>x=-1`
Vậy `x=-1`