Bạn tham khảo : $A = 2+2^2+2^3+…+2^{30}$ $2A = 2^2 + 2^3 + 2^4 + … 2^{31}$ $2A – A = ( 2^2 + 2^3 + 2^4 + … 2^{31}) – ( 2+2^2+2^3+…+2^{30})$ $A = (2^2 – 2^2) + (2^3 – 2^3) + (2^4 – 2^4) + … + (2^{31} -2 )$ $A = 2^{31} – 2$ Ta có : $ 2^{31} – 2 = 2^{31} + 2 – 2$ Mà $A + 2 = 2^{31} -2+2 = 2^{31}$ Vậy $A+2 = 2^{31}$ Bình luận
Ta có $A = 2 + 2^2 + \cdots + 2^{30}$ $2A = 2^2 + 2^3 + \cdots + 2^{30} + 2^{31}$ Vậy $A = 2A – A = (2^2 + 2^3 + \cdots + 2^{30} + 2^{31}) – (2 + 2^2 + \cdots + 2^{30}) = 2^{31} – 2$ Khi đó, ta có $A+2 = 2^{31}-2 + 2 = 2^{31}$ Bình luận
Bạn tham khảo :
$A = 2+2^2+2^3+…+2^{30}$
$2A = 2^2 + 2^3 + 2^4 + … 2^{31}$
$2A – A = ( 2^2 + 2^3 + 2^4 + … 2^{31}) – ( 2+2^2+2^3+…+2^{30})$
$A = (2^2 – 2^2) + (2^3 – 2^3) + (2^4 – 2^4) + … + (2^{31} -2 )$
$A = 2^{31} – 2$
Ta có :
$ 2^{31} – 2 = 2^{31} + 2 – 2$
Mà $A + 2 = 2^{31} -2+2 = 2^{31}$
Vậy $A+2 = 2^{31}$
Ta có
$A = 2 + 2^2 + \cdots + 2^{30}$
$2A = 2^2 + 2^3 + \cdots + 2^{30} + 2^{31}$
Vậy
$A = 2A – A = (2^2 + 2^3 + \cdots + 2^{30} + 2^{31}) – (2 + 2^2 + \cdots + 2^{30}) = 2^{31} – 2$
Khi đó, ta có
$A+2 = 2^{31}-2 + 2 = 2^{31}$