a) 2x -2= 4 ( x -1) b) 3x(x -2)- 2x + 4=0 c) x+2/x-2 – 1/x= 2/ x^2 -2x |x – 3|= 3x +1 2x + 6/4 -2 <= x /3

a) 2x -2= 4 ( x -1)
b) 3x(x -2)- 2x + 4=0
c) x+2/x-2 – 1/x= 2/ x^2 -2x
|x – 3|= 3x +1
2x + 6/4 -2 <= x /3

0 bình luận về “a) 2x -2= 4 ( x -1) b) 3x(x -2)- 2x + 4=0 c) x+2/x-2 – 1/x= 2/ x^2 -2x |x – 3|= 3x +1 2x + 6/4 -2 <= x /3”

  1. Đáp án:

     A)2x -2=4 ( x-1)

    ->2 x -2= 4 x-4

    ->2x-4x=-4+2

    ->-2x=-2

    ->x=1

    B)-> 3×2-6x-2x +4=0

    ->3×2-8x+4=0

    ->3×2-6x-2x+4=0

    ->(3×2-6x)-(2x-4)=0

    ->3x(x-2)-2(x-2)=0

    ->(x-2)(3x-2)=0 

    Bình luận
  2. Đáp án:

    $\begin{array}{l}
    a)2x – 2 = 4\left( {x – 1} \right)\\
     \Rightarrow 2\left( {x – 1} \right) = 4\left( {x – 1} \right)\\
     \Rightarrow x = 1\\
    b)3x\left( {x – 2} \right) – 2x + 4 = 0\\
     \Rightarrow 3x\left( {x – 2} \right) – 2\left( {x – 2} \right) = 0\\
     \Rightarrow \left( {x – 2} \right)\left( {3x – 2} \right) = 0\\
     \Rightarrow \left[ \begin{array}{l}
    x – 2 = 0\\
    3x – 2 = 0
    \end{array} \right.\\
     \Rightarrow \left[ \begin{array}{l}
    x = 2\\
    x = \frac{2}{3}
    \end{array} \right.\\
    c)\frac{{x + 2}}{{x – 2}} – \frac{1}{x} = \frac{2}{{{x^2} – 2x}}\left( {dk:x \ne 0;x \ne 2} \right)\\
     \Rightarrow \frac{{x\left( {x + 2} \right) – x + 2}}{{x\left( {x – 2} \right)}} = \frac{2}{{x\left( {x – 2} \right)}}\\
     \Rightarrow {x^2} + 2x – x + 2 = 2\\
     \Rightarrow {x^2} + x = 0\\
     \Rightarrow x\left( {x + 1} \right) = 0\\
     \Rightarrow \left[ \begin{array}{l}
    x = 0\left( {ktm} \right)\\
    x =  – 1\left( {tm} \right)
    \end{array} \right.\\
    Vay\,x =  – 1\\
    d)\left| {x – 3} \right| = 3x + 1\left( {x \ge  – \frac{1}{3}} \right)\\
     \Rightarrow \left[ \begin{array}{l}
    x – 3 = 3x + 1\\
    x – 3 =  – 3x – 1
    \end{array} \right.\\
     \Rightarrow \left[ \begin{array}{l}
    x =  – 2\left( {ktm} \right)\\
    x = \frac{1}{2}\left( {tm} \right)
    \end{array} \right.\\
    Vay\,x = \frac{1}{2}\\
    e)\frac{{2x + 6}}{4} – 2 \le \frac{x}{3}\\
     \Rightarrow \frac{{x + 3}}{2} – 2 \le \frac{x}{3}\\
     \Rightarrow \frac{{x + 3 – 4}}{2} \le \frac{x}{3}\\
     \Rightarrow \frac{{x – 1}}{2} – \frac{x}{3} \le 0\\
     \Rightarrow \frac{{3x – 3 – 2x}}{6} \le 0\\
     \Rightarrow x – 3 \le 0\\
     \Rightarrow x \le 3
    \end{array}$

    Bình luận

Viết một bình luận