a) 2x -2= 4 ( x -1) b) 3x(x -2)- 2x + 4=0 c) x+2/x-2 – 1/x= 2/ x^2 -2x |x – 3|= 3x +1 2x + 6/4 -2 <= x /3 14/11/2021 Bởi Faith a) 2x -2= 4 ( x -1) b) 3x(x -2)- 2x + 4=0 c) x+2/x-2 – 1/x= 2/ x^2 -2x |x – 3|= 3x +1 2x + 6/4 -2 <= x /3
Đáp án: A)2x -2=4 ( x-1) ->2 x -2= 4 x-4 ->2x-4x=-4+2 ->-2x=-2 ->x=1 B)-> 3×2-6x-2x +4=0 ->3×2-8x+4=0 ->3×2-6x-2x+4=0 ->(3×2-6x)-(2x-4)=0 ->3x(x-2)-2(x-2)=0 ->(x-2)(3x-2)=0 Bình luận
Đáp án: $\begin{array}{l}a)2x – 2 = 4\left( {x – 1} \right)\\ \Rightarrow 2\left( {x – 1} \right) = 4\left( {x – 1} \right)\\ \Rightarrow x = 1\\b)3x\left( {x – 2} \right) – 2x + 4 = 0\\ \Rightarrow 3x\left( {x – 2} \right) – 2\left( {x – 2} \right) = 0\\ \Rightarrow \left( {x – 2} \right)\left( {3x – 2} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x – 2 = 0\\3x – 2 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 2\\x = \frac{2}{3}\end{array} \right.\\c)\frac{{x + 2}}{{x – 2}} – \frac{1}{x} = \frac{2}{{{x^2} – 2x}}\left( {dk:x \ne 0;x \ne 2} \right)\\ \Rightarrow \frac{{x\left( {x + 2} \right) – x + 2}}{{x\left( {x – 2} \right)}} = \frac{2}{{x\left( {x – 2} \right)}}\\ \Rightarrow {x^2} + 2x – x + 2 = 2\\ \Rightarrow {x^2} + x = 0\\ \Rightarrow x\left( {x + 1} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x = 0\left( {ktm} \right)\\x = – 1\left( {tm} \right)\end{array} \right.\\Vay\,x = – 1\\d)\left| {x – 3} \right| = 3x + 1\left( {x \ge – \frac{1}{3}} \right)\\ \Rightarrow \left[ \begin{array}{l}x – 3 = 3x + 1\\x – 3 = – 3x – 1\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = – 2\left( {ktm} \right)\\x = \frac{1}{2}\left( {tm} \right)\end{array} \right.\\Vay\,x = \frac{1}{2}\\e)\frac{{2x + 6}}{4} – 2 \le \frac{x}{3}\\ \Rightarrow \frac{{x + 3}}{2} – 2 \le \frac{x}{3}\\ \Rightarrow \frac{{x + 3 – 4}}{2} \le \frac{x}{3}\\ \Rightarrow \frac{{x – 1}}{2} – \frac{x}{3} \le 0\\ \Rightarrow \frac{{3x – 3 – 2x}}{6} \le 0\\ \Rightarrow x – 3 \le 0\\ \Rightarrow x \le 3\end{array}$ Bình luận
Đáp án:
A)2x -2=4 ( x-1)
->2 x -2= 4 x-4
->2x-4x=-4+2
->-2x=-2
->x=1
B)-> 3×2-6x-2x +4=0
->3×2-8x+4=0
->3×2-6x-2x+4=0
->(3×2-6x)-(2x-4)=0
->3x(x-2)-2(x-2)=0
->(x-2)(3x-2)=0
Đáp án:
$\begin{array}{l}
a)2x – 2 = 4\left( {x – 1} \right)\\
\Rightarrow 2\left( {x – 1} \right) = 4\left( {x – 1} \right)\\
\Rightarrow x = 1\\
b)3x\left( {x – 2} \right) – 2x + 4 = 0\\
\Rightarrow 3x\left( {x – 2} \right) – 2\left( {x – 2} \right) = 0\\
\Rightarrow \left( {x – 2} \right)\left( {3x – 2} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x – 2 = 0\\
3x – 2 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 2\\
x = \frac{2}{3}
\end{array} \right.\\
c)\frac{{x + 2}}{{x – 2}} – \frac{1}{x} = \frac{2}{{{x^2} – 2x}}\left( {dk:x \ne 0;x \ne 2} \right)\\
\Rightarrow \frac{{x\left( {x + 2} \right) – x + 2}}{{x\left( {x – 2} \right)}} = \frac{2}{{x\left( {x – 2} \right)}}\\
\Rightarrow {x^2} + 2x – x + 2 = 2\\
\Rightarrow {x^2} + x = 0\\
\Rightarrow x\left( {x + 1} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x = 0\left( {ktm} \right)\\
x = – 1\left( {tm} \right)
\end{array} \right.\\
Vay\,x = – 1\\
d)\left| {x – 3} \right| = 3x + 1\left( {x \ge – \frac{1}{3}} \right)\\
\Rightarrow \left[ \begin{array}{l}
x – 3 = 3x + 1\\
x – 3 = – 3x – 1
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = – 2\left( {ktm} \right)\\
x = \frac{1}{2}\left( {tm} \right)
\end{array} \right.\\
Vay\,x = \frac{1}{2}\\
e)\frac{{2x + 6}}{4} – 2 \le \frac{x}{3}\\
\Rightarrow \frac{{x + 3}}{2} – 2 \le \frac{x}{3}\\
\Rightarrow \frac{{x + 3 – 4}}{2} \le \frac{x}{3}\\
\Rightarrow \frac{{x – 1}}{2} – \frac{x}{3} \le 0\\
\Rightarrow \frac{{3x – 3 – 2x}}{6} \le 0\\
\Rightarrow x – 3 \le 0\\
\Rightarrow x \le 3
\end{array}$