a) (x + 2) (x ² – 2x + 4) – x(x ²+ 2)=15 b) (x + 3) ³ – x (3x +1) ² + (2x +1) (4x ² – 2x +1) c) (x ² -1) ³ – (x^4 + x ² + 1) (x ² – 1) =0 tìm x ạ

a) (x + 2) (x ² – 2x + 4) – x(x ²+ 2)=15
b) (x + 3) ³ – x (3x +1) ² + (2x +1) (4x ² – 2x +1)
c) (x ² -1) ³ – (x^4 + x ² + 1) (x ² – 1) =0
tìm x ạ

0 bình luận về “a) (x + 2) (x ² – 2x + 4) – x(x ²+ 2)=15 b) (x + 3) ³ – x (3x +1) ² + (2x +1) (4x ² – 2x +1) c) (x ² -1) ³ – (x^4 + x ² + 1) (x ² – 1) =0 tìm x ạ”

  1. `a,(x+2)(x^2-2x+4)-x(x^2+2)=15`

    `⇔x^3+8-x^3-2x=15`

    `⇔-2x=7`

    `⇔x=-7/2`

    `b,(x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28`

    `⇔x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28`

    `⇔3x^2+26x=0`

    `⇔x(3x+26)=0`

    `⇔x=0` hoặc `x=-26/3`

    `c,(x^2-1)^3-(x^4+x^2+1)(x^2-1)=0`

    `⇔(x^2-1)[(x^2-1)^2-x^4-x^2-1]=0`

    `⇔(x-1)(x+1)(x^4-2x^2+1-x^4-x^2-1)=0`

    `⇔-3x^2(x-1)(x+1)=0`

    `⇔x=0` hoặc `x=+-1`

     

    Vậy ………………….

    Bình luận
  2. `a,(x+2)(x^2-2x+4)-x(x^2+2)=15`

    `⇔x^3+8-x^3-2x=15`

    `⇔-2x=7`

    `⇔x=-7/2`

    `b,(x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28`

    `⇔x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28`

    `⇔3x^2+26x=0`

    `⇔x(3x+26)=0`

    `⇔` \(\left[ \begin{array}{l}x=0\\3x+26=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=\dfrac{-26}{3}\end{array} \right.\) 

    `c,(x^2-1)^3-(x^4+x^2+1)(x^2-1)=0`

    `⇔(x^2-1)[(x^2-1)^2-x^4-x^2-1]=0`

    `⇔(x-1)(x+1)(x^4-2x^2+1-x^4-x^2-1)=0`

    `⇔-3x^2(x-1)(x+1)=0`

    `⇔` \(\left[ \begin{array}{l}x-1=0\\x+1=0\\-3x^2=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=±1\\x=0\end{array} \right.\)

    Bình luận

Viết một bình luận