a,(x+2)(2x-5)=x ²+4x+4 b,x ²-16=0 c,x ^4-16=0 d.x ²+5x+6=0 e,x ²-8x+12=0 f,x^4=1 giúp iem vs mơn nhìu

a,(x+2)(2x-5)=x ²+4x+4
b,x ²-16=0
c,x ^4-16=0
d.x ²+5x+6=0
e,x ²-8x+12=0
f,x^4=1
giúp iem vs mơn nhìu

0 bình luận về “a,(x+2)(2x-5)=x ²+4x+4 b,x ²-16=0 c,x ^4-16=0 d.x ²+5x+6=0 e,x ²-8x+12=0 f,x^4=1 giúp iem vs mơn nhìu”

  1. Đáp án + Giải thích các bước giải:

    `a,(x+2)(2x-5)=x^2+4x+4`

    `⇔2x^2-5x+4x-10-x^2-4x-4=0`

    `⇔x^2-5x-14=0`

    `⇔(x^2+2x)-(7x+14)=0`

    `⇔x(x+2)-7(x+2)=0`

    `⇔(x+2)(x-7)=0`

    `⇔` \(\left[ \begin{array}{l}x+2=0\\x-7=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=-2\\x=7\end{array} \right.\) 

    Vậy `x∈{-2;7}`

    `b,x^2-16=0`

    `⇔(x-4)(x+4)=0`

    `⇔` \(\left[ \begin{array}{l}x-4=0\\x+4=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

    Vậy `x∈{4;-4}`

    `c,x^4-16=0`

    `⇔(x^2-4)(x^2+4)=0`

    `⇔(x^2-4)=0` `[ Do  (x^2+4) > 0 ]`

    `⇔(x-2)(x+2)=0`

    `⇔` \(\left[ \begin{array}{l}x-2=0\\x+2=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\) 

    Vậy `x∈{2;-2}`

    `d,x^2+5x+6=0`

    `⇔(x^2+2x)+(3x+6)=0`

    `⇔x(x+2)+3(x+2)=0`

    `⇔(x+2)(x+3)=0`

    `⇔` \(\left[ \begin{array}{l}x+2=0\\x+3=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=-2\\x=-3\end{array} \right.\) 

    Vậy `x∈{-2;-3}`

    `e,x^2-8x+12=0`

    `⇔(x^2-6x)-(2x-12)=0`

    `⇔x(x-6)-2(x-6)=0`

    `⇔(x-6)(x-2)=0`

    `⇔` \(\left[ \begin{array}{l}x-6=0\\x-2=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=6\\x=2\end{array} \right.\) 

    Vậy `x∈{6;2}`

    `f,x^4=1`

    `⇔` \(\left[ \begin{array}{l}x^4=1^4\\x^4=(-1)^4\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

    Vậy `x∈{1;-1}`

    Bình luận
  2. $#Dinosaurss$

    a, `(x+2)(2x-5)=x^(2)+4x+4`

    `⇔(x+2)(2x-5)=(x+2)^2`

    `⇔(x+2)(2x-5)-(x+2)^2=0`

    `⇔(x+2)(2x-5-x-2)=0`

    `⇔(x+2)(x-7)=0`

    `⇔x+2=0`

       `x-7=0`

    `⇔x=-2`

        `x=7`

    Vậy `S={-2;7}`

    b, `x^(2)-16=0`

    `⇔x^(2)=16`

    `⇔x=±4`

    Vậy `S={±4}`

    c,` x^(4)-16=0`

    `⇔x^4=16`

    `⇔x=±2`

    Vậy `S={±2}`

    d, `x^(2)+5x+6=0`

    `⇔x(2)+2x+3x+6=0`

    `⇔x(x+2)+3(x+2)=0`

    `⇔(x+2)(x+3)=0`

    `⇔x+2=0`

        `x+3=0`

    `⇔x=-2`

        `x=-3`

    Vậy `S={-2;-3}`

    e,`x^(2)-8x+12=0`

    `⇔x^(2)-6x-2x+12=0`

    `⇔x(x-6)-2(x-6)=0`

    `⇔(x-6)(x-2)=0`

    `⇔x-6=0`

        `x-2=0`

    `⇔x=6`

        `x=2`

    Vậy `S={6;2}`

    f, `x^4=1`

    `⇔x^4=1^4`

    `⇔x=±1`

    Vậy `S={±1}`

    @DuongQuynhChi<3

    Bình luận

Viết một bình luận