a) x/2(x-3) + x/2x+2 = 2x/ (x+1) (x-3)
b) x+25/2x^2-50 – x+5/x^2-5x = 5-x/2x^2+10x
c) 3/x^2+x-2 – 1/x-1 = -7/x+2
d) 6/x-1 – 4/x-3 = 8/(x-1)(3-x)
e) 1/x-1 – 3x^2/x^3-1 = 2x/x^2+x+1
a) x/2(x-3) + x/2x+2 = 2x/ (x+1) (x-3)
b) x+25/2x^2-50 – x+5/x^2-5x = 5-x/2x^2+10x
c) 3/x^2+x-2 – 1/x-1 = -7/x+2
d) 6/x-1 – 4/x-3 = 8/(x-1)(3-x)
e) 1/x-1 – 3x^2/x^3-1 = 2x/x^2+x+1
`x/(2(x-3)) + x/(2x+2) = (2x)/ ((x+1) (x-3))`
`<=>x(x+1)+x(x-3)=4x`
`<=>2x^2-6x=0`
`<=>x=0` hoặc `x=3(ktm)`
Vậy ……..
`( x+25)/(2x^2-50) – (x+5)/(x^2-5x) = (5-x)/(2x^2+10x)`
`<=>-x^2+5x-50=10x-25-x^2`
`<=>5x=-25`
`<=>x=-5(l)`
`3/(x^2+x-2 )- 1/(x-1) = -7/(x+2)`
`<=>3-x-2=-7(x-1)`
`<=>x=1(l)`
`6/(x-1) – 4/(x-3) = 8/((x-1)(3-x))`
`<=>20x-2x^2-42=8x-24`
`<=>(x-3)^2=0`
`<=>x=3(l)`