a, √(2+√3)² – √3 Rút gọn x√y + y√x : 1 _______ _____ √xy √x-√y 09/07/2021 Bởi Gabriella a, √(2+√3)² – √3 Rút gọn x√y + y√x : 1 _______ _____ √xy √x-√y
Đáp án: $\begin{array}{l}a)\sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} – \sqrt 3 \\ = 2 + \sqrt 3 – \sqrt 3 \\ = 2\\b)\dfrac{{x\sqrt y + y\sqrt x }}{{\sqrt {xy} }}:\dfrac{1}{{\sqrt x – \sqrt y }}\\ = \dfrac{{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)}}{{\sqrt {xy} }}.\left( {\sqrt x – \sqrt y } \right)\\ = \left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x – \sqrt y } \right)\\ = x – y\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)\sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} – \sqrt 3 \\
= 2 + \sqrt 3 – \sqrt 3 \\
= 2\\
b)\dfrac{{x\sqrt y + y\sqrt x }}{{\sqrt {xy} }}:\dfrac{1}{{\sqrt x – \sqrt y }}\\
= \dfrac{{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)}}{{\sqrt {xy} }}.\left( {\sqrt x – \sqrt y } \right)\\
= \left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x – \sqrt y } \right)\\
= x – y
\end{array}$