a)|x+2|-3=-7/5 b) |8-3x|=1>0 c) |3x+1|=5 d) |x+4|=2x -6 e) |2x+5|=8 f) | x+2|=6-2x g) | 2x-3|+1=5x 22/08/2021 Bởi Abigail a)|x+2|-3=-7/5 b) |8-3x|=1>0 c) |3x+1|=5 d) |x+4|=2x -6 e) |2x+5|=8 f) | x+2|=6-2x g) | 2x-3|+1=5x
Đáp án: e) \(x = \dfrac{4}{7}\) Giải thích các bước giải: \(\begin{array}{l}a)\left| {x + 2} \right| = \dfrac{8}{5}\\ \to \left[ \begin{array}{l}x + 2 = \dfrac{8}{5}\\x + 2 = – \dfrac{8}{5}\end{array} \right.\\ \to \left[ \begin{array}{l}x = – \dfrac{2}{5}\\x = – 6\end{array} \right.\\b)\left| {8 – 3x} \right| = 1\\ \to \left[ \begin{array}{l}8 – 3x = 1\left( {DK:\dfrac{8}{3} \ge x} \right)\\8 – 3x = – 1\left( {DK:\dfrac{8}{3} < x} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{7}{3}\\x = 3\end{array} \right.\left( {TM} \right)\\c)\left| {3x + 1} \right| = 5\\ \to \left[ \begin{array}{l}3x + 1 = 5\\3x + 1 = – 5\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{4}{3}\\x = – 2\end{array} \right.\\d)\left| {x + 4} \right| = 2x – 6\\ \to \left[ \begin{array}{l}x + 4 = 2x – 6\\x + 4 = – 2x + 6\end{array} \right.\\ \to \left[ \begin{array}{l}x = 10\\3x = 2\end{array} \right.\\ \to \left[ \begin{array}{l}x = 10\\x = \dfrac{2}{3}\end{array} \right.\\e)\left| {2x + 5} \right| = 8\\ \to \left[ \begin{array}{l}2x + 5 = 8\\2x + 5 = – 8\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{3}{2}\\x = – \dfrac{{13}}{2}\end{array} \right.\\f)\left| {x + 2} \right| = 6 – 2x\\ \to \left[ \begin{array}{l}x + 2 = 6 – 2x\left( {DK:x \ge – 2} \right)\\x + 2 = – 6 + 2x\left( {DK:x < – 2} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}3x = 4\\x = 8\left( l \right)\end{array} \right.\\ \to x = \dfrac{4}{3}\\g)\left| {2x – 3} \right| = 5x – 1\\ \to \left[ \begin{array}{l}2x – 3 = 5x – 1\left( {DK:x \ge \dfrac{3}{2}} \right)\\2x – 3 = – 5x + 1\left( {DK:x < \dfrac{3}{2}} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}3x = – 2\\7x = 4\end{array} \right.\\ \to \left[ \begin{array}{l}x = – \dfrac{2}{3}\left( l \right)\\x = \dfrac{4}{7}\end{array} \right.\end{array}\) Bình luận
Đáp án:
e) \(x = \dfrac{4}{7}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left| {x + 2} \right| = \dfrac{8}{5}\\
\to \left[ \begin{array}{l}
x + 2 = \dfrac{8}{5}\\
x + 2 = – \dfrac{8}{5}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – \dfrac{2}{5}\\
x = – 6
\end{array} \right.\\
b)\left| {8 – 3x} \right| = 1\\
\to \left[ \begin{array}{l}
8 – 3x = 1\left( {DK:\dfrac{8}{3} \ge x} \right)\\
8 – 3x = – 1\left( {DK:\dfrac{8}{3} < x} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{7}{3}\\
x = 3
\end{array} \right.\left( {TM} \right)\\
c)\left| {3x + 1} \right| = 5\\
\to \left[ \begin{array}{l}
3x + 1 = 5\\
3x + 1 = – 5
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{4}{3}\\
x = – 2
\end{array} \right.\\
d)\left| {x + 4} \right| = 2x – 6\\
\to \left[ \begin{array}{l}
x + 4 = 2x – 6\\
x + 4 = – 2x + 6
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 10\\
3x = 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 10\\
x = \dfrac{2}{3}
\end{array} \right.\\
e)\left| {2x + 5} \right| = 8\\
\to \left[ \begin{array}{l}
2x + 5 = 8\\
2x + 5 = – 8
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{3}{2}\\
x = – \dfrac{{13}}{2}
\end{array} \right.\\
f)\left| {x + 2} \right| = 6 – 2x\\
\to \left[ \begin{array}{l}
x + 2 = 6 – 2x\left( {DK:x \ge – 2} \right)\\
x + 2 = – 6 + 2x\left( {DK:x < – 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
3x = 4\\
x = 8\left( l \right)
\end{array} \right.\\
\to x = \dfrac{4}{3}\\
g)\left| {2x – 3} \right| = 5x – 1\\
\to \left[ \begin{array}{l}
2x – 3 = 5x – 1\left( {DK:x \ge \dfrac{3}{2}} \right)\\
2x – 3 = – 5x + 1\left( {DK:x < \dfrac{3}{2}} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
3x = – 2\\
7x = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – \dfrac{2}{3}\left( l \right)\\
x = \dfrac{4}{7}
\end{array} \right.
\end{array}\)