a) $x^{2}$ + 5x – $y^{2}$ – 5y b) $2x^{2}$ + 4xy + x + 2y c) xy + x + $x^{2}$y + 1 d) $x^{2}$ – 4 + ($x-2)^{2}$ e) $x^{2}$ – 4x – $4y^{2}$ + 4

a) $x^{2}$ + 5x – $y^{2}$ – 5y
b) $2x^{2}$ + 4xy + x + 2y
c) xy + x + $x^{2}$y + 1
d) $x^{2}$ – 4 + ($x-2)^{2}$
e) $x^{2}$ – 4x – $4y^{2}$ + 4
f) 45+ $x^{3}$ – $5x^{2}$ – 9x
g) $x^{3}$ – $3x^{2}$ – 4x + 12
h) $x^{3}$ – $3x^{2}$ + 6x – 18
i) $x^{3}$ – $4x^{2}$ – 12x + 27
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG CÁCH PHỐI HỢP NHIỀU PHƯƠNG PHÁP

0 bình luận về “a) $x^{2}$ + 5x – $y^{2}$ – 5y b) $2x^{2}$ + 4xy + x + 2y c) xy + x + $x^{2}$y + 1 d) $x^{2}$ – 4 + ($x-2)^{2}$ e) $x^{2}$ – 4x – $4y^{2}$ + 4”

  1. Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    a,\\
    {x^2} + 5x – {y^2} – 5y\\
     = \left( {{x^2} – {y^2}} \right) + \left( {5x – 5y} \right)\\
     = \left( {x – y} \right)\left( {x + y} \right) + 5\left( {x – y} \right)\\
     = \left( {x – y} \right)\left( {x + y + 5} \right)\\
    b,\\
    2{x^2} + 4xy + x + 2y\\
     = \left( {2{x^2} + 4xy} \right) + \left( {x + 2y} \right)\\
     = 2x\left( {x + 2y} \right) + \left( {x + 2y} \right)\\
     = \left( {x + 2y} \right)\left( {2x + 1} \right)\\
    c,\\
    xy + x + {x^2}y + 1\\
     = \left( {xy + {x^2}y} \right) + \left( {x + 1} \right)\\
     = xy\left( {1 + x} \right) + \left( {x + 1} \right)\\
     = \left( {x + 1} \right)\left( {xy + 1} \right)\\
    d,\\
    {x^2} – 4 + {\left( {x – 2} \right)^2}\\
     = \left( {x – 2} \right)\left( {x + 2} \right) + {\left( {x – 2} \right)^2}\\
     = \left( {x – 2} \right).\left[ {\left( {x + 2} \right) + \left( {x – 2} \right)} \right]\\
     = \left( {x – 2} \right).2x\\
     = 2x\left( {x – 2} \right)\\
    e,\\
    {x^2} – 4x – 4{y^2} + 4\\
     = \left( {{x^2} – 4x + 4} \right) – 4{y^2}\\
     = {\left( {x – 2} \right)^2} – {\left( {2y} \right)^2}\\
     = \left( {x – 2 – 2y} \right)\left( {x – 2 + 2y} \right)\\
    f,\\
    45 + {x^3} – 5{x^2} – 9x\\
     = \left( {{x^3} – 5{x^2}} \right) – \left( {9x – 45} \right)\\
     = {x^2}\left( {x – 5} \right) – 9\left( {x – 5} \right)\\
     = \left( {x – 5} \right)\left( {{x^2} – 9} \right)\\
     = \left( {x – 5} \right)\left( {x – 3} \right)\left( {x + 3} \right)\\
    g,\\
    {x^3} – 3{x^2} – 4x + 12\\
     = \left( {{x^3} – 3{x^2}} \right) – \left( {4x – 12} \right)\\
     = {x^2}\left( {x – 3} \right) – 4\left( {x – 3} \right)\\
     = \left( {x – 3} \right)\left( {{x^2} – 4} \right)\\
     = \left( {x – 3} \right)\left( {x – 2} \right)\left( {x + 2} \right)\\
    h,\\
    {x^3} – 3{x^2} + 6x – 18\\
     = \left( {{x^3} – 3{x^2}} \right) + \left( {6x – 18} \right)\\
     = {x^2}\left( {x – 3} \right) + 6\left( {x – 3} \right)\\
     = \left( {x – 3} \right)\left( {{x^2} + 6} \right)\\
    i,\\
    {x^3} – 4{x^2} – 12x + 27\\
     = \left( {{x^3} + 27} \right) – \left( {4{x^2} + 12x} \right)\\
     = \left( {x + 3} \right)\left( {{x^2} – 3x + 9} \right) – 4x\left( {x + 3} \right)\\
     = \left( {x + 3} \right)\left( {{x^2} – 7x + 9} \right)
    \end{array}\)

    Bình luận

Viết một bình luận