A= (x+2 phần x+ 3) trừ (5 phần x^2+x-6) cộng ( 1 phần 2-x ) a)rút gọn b)tìm x để A>0 c)tìm x để A nguyên dương 26/07/2021 Bởi Samantha A= (x+2 phần x+ 3) trừ (5 phần x^2+x-6) cộng ( 1 phần 2-x ) a)rút gọn b)tìm x để A>0 c)tìm x để A nguyên dương
Đáp án: $\begin{array}{l}Đkxđ:\left\{ \begin{array}{l}x \ne – 3\\{x^2} + x – 6 \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne – 3\\\left( {x – 2} \right)\left( {x + 3} \right) \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne – 3\\x \ne 2\end{array} \right.\\a)A = \frac{{x + 2}}{{x + 3}} – \frac{5}{{{x^2} + x – 6}}\\ = \frac{{x + 2}}{{x + 3}} – \frac{5}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{\left( {x + 2} \right)\left( {x – 2} \right) – 5}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{{x^2} – 4 – 5}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{{x^2} – 9}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{\left( {x + 3} \right)\left( {x – 3} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{x – 3}}{{x – 2}}\\b)x \ne 2;x \ne – 3\\A > 0\\ \Rightarrow \frac{{x – 3}}{{x – 2}} > 0\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x – 3 > 0\\x – 2 > 0\end{array} \right.\\\left\{ \begin{array}{l}x – 3 < 0\\x – 2 < 0\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 3\\x > 2\end{array} \right.\\\left\{ \begin{array}{l}x < 3\\x < 2\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}x > 3\\x < 2\end{array} \right.\\Vậy\,\left[ \begin{array}{l}x > 3\\x < 2;x \ne – 3\end{array} \right.\\c)x \ne – 3;x \ne 2\\A = \frac{{x – 3}}{{x – 2}} = \frac{{x – 2 – 1}}{{x – 2}} = 1 – \frac{1}{{x – 2}}\end{array}$ Để A nguyên dương thì 1/(x-2) phải nguyên và $\frac{1}{{x – 2}} < 1$ $ \Rightarrow \left[ \begin{array}{l}x – 2 = 1\\x – 2 = – 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 3\left( {tm} \right)\\x = 1\left( {tm} \right)\end{array} \right.$ Thử lại + x=3 thì $A = \frac{{x – 3}}{{x – 2}} = 0$ ko nguyên dương => x=3 loại +x=1 thì $A = \frac{{x – 3}}{{x – 2}} = 2$ nguyên dương Vậy x=1 Bình luận
Đáp án:
Giải thích các bước giải:
Đáp án:
$\begin{array}{l}
Đkxđ:\left\{ \begin{array}{l}
x \ne – 3\\
{x^2} + x – 6 \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ne – 3\\
\left( {x – 2} \right)\left( {x + 3} \right) \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ne – 3\\
x \ne 2
\end{array} \right.\\
a)A = \frac{{x + 2}}{{x + 3}} – \frac{5}{{{x^2} + x – 6}}\\
= \frac{{x + 2}}{{x + 3}} – \frac{5}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{\left( {x + 2} \right)\left( {x – 2} \right) – 5}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{{x^2} – 4 – 5}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{{x^2} – 9}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{\left( {x + 3} \right)\left( {x – 3} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{x – 3}}{{x – 2}}\\
b)x \ne 2;x \ne – 3\\
A > 0\\
\Rightarrow \frac{{x – 3}}{{x – 2}} > 0\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x – 3 > 0\\
x – 2 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x – 3 < 0\\
x – 2 < 0
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x > 3\\
x > 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x < 3\\
x < 2
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x > 3\\
x < 2
\end{array} \right.\\
Vậy\,\left[ \begin{array}{l}
x > 3\\
x < 2;x \ne – 3
\end{array} \right.\\
c)x \ne – 3;x \ne 2\\
A = \frac{{x – 3}}{{x – 2}} = \frac{{x – 2 – 1}}{{x – 2}} = 1 – \frac{1}{{x – 2}}
\end{array}$
Để A nguyên dương thì 1/(x-2) phải nguyên và $\frac{1}{{x – 2}} < 1$
$ \Rightarrow \left[ \begin{array}{l}
x – 2 = 1\\
x – 2 = – 1
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = 3\left( {tm} \right)\\
x = 1\left( {tm} \right)
\end{array} \right.$
Thử lại + x=3 thì $A = \frac{{x – 3}}{{x – 2}} = 0$ ko nguyên dương
=> x=3 loại
+x=1 thì $A = \frac{{x – 3}}{{x – 2}} = 2$ nguyên dương
Vậy x=1