a.(x+4)^2+(3+x)(3-x)+1 b.(x+4)/2-(x-1)/3=1 c.(x-2)^2=9 03/11/2021 Bởi Adalynn a.(x+4)^2+(3+x)(3-x)+1 b.(x+4)/2-(x-1)/3=1 c.(x-2)^2=9
a)(x+4)²+(3+x)(3-x)=1 ⇔x²+8x+16+9-x²=1 ⇔(x²-x²)+8x+16+9=1 ⇔8x=-24 ⇔x=-3 vậy S={-3} b)$\frac{x+4}{2}$ -$\frac{x-1}{3}$ =1 ⇔ $\frac{3(x+4)-2(x-1)}{6}$ =$\frac{6}{6}$ ⇔3x+12-2x+2=6 ⇔3x-2x=6-12-2 ⇔x=-8 vậy S={-8} c)(x-2)²=9 ⇒(x-2)²=3² ⇒ \(\left[ \begin{array}{1}x-2=3\\x-2=-3\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.\) vậy s={5,-1} xin 5sao và tlhn nha bạn:3 !học tốt nha! @Dinosieucute Bình luận
`a)(x+4)^2+(3+x)(3-x)=1` `⇔x^2+8x+16+9-x^2=1` `⇔(x^2-x^2)+8x+16+9=1` `⇔8x=-24` `⇔x=-3` Vậy `S={-3}` `b)(x+4)/2-(x-1)/3=1` `⇔(3(x+4)-2(x-1))/6=6/6` `⇔3x+12-2x+2=6` `⇔3x-2x=6-12-2` `⇔x=-8` Vậy `S={-8}` `c)(x-2)^2=9` `→(x-2)^2=3^2` `→` \(\left[ \begin{array}{l}x-2=3\\x-2=-3\end{array} \right.\) `→` \(\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.\) Vậy `S={5;-1}` Bình luận
a)(x+4)²+(3+x)(3-x)=1
⇔x²+8x+16+9-x²=1
⇔(x²-x²)+8x+16+9=1
⇔8x=-24
⇔x=-3
vậy S={-3}
b)$\frac{x+4}{2}$ -$\frac{x-1}{3}$ =1
⇔ $\frac{3(x+4)-2(x-1)}{6}$ =$\frac{6}{6}$
⇔3x+12-2x+2=6
⇔3x-2x=6-12-2
⇔x=-8
vậy S={-8}
c)(x-2)²=9
⇒(x-2)²=3²
⇒ \(\left[ \begin{array}{1}x-2=3\\x-2=-3\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.\)
vậy s={5,-1}
xin 5sao và tlhn nha bạn:3
!học tốt nha!
@Dinosieucute
`a)(x+4)^2+(3+x)(3-x)=1`
`⇔x^2+8x+16+9-x^2=1`
`⇔(x^2-x^2)+8x+16+9=1`
`⇔8x=-24`
`⇔x=-3`
Vậy `S={-3}`
`b)(x+4)/2-(x-1)/3=1`
`⇔(3(x+4)-2(x-1))/6=6/6`
`⇔3x+12-2x+2=6`
`⇔3x-2x=6-12-2`
`⇔x=-8`
Vậy `S={-8}`
`c)(x-2)^2=9`
`→(x-2)^2=3^2`
`→` \(\left[ \begin{array}{l}x-2=3\\x-2=-3\end{array} \right.\)
`→` \(\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.\)
Vậy `S={5;-1}`