a.(x+4)^2+(3+x)(3-x)+1 b.(x+4)/2-(x-1)/3=1 c.(x-2)^2=9

a.(x+4)^2+(3+x)(3-x)+1
b.(x+4)/2-(x-1)/3=1
c.(x-2)^2=9

0 bình luận về “a.(x+4)^2+(3+x)(3-x)+1 b.(x+4)/2-(x-1)/3=1 c.(x-2)^2=9”

  1. a)(x+4)²+(3+x)(3-x)=1

    ⇔x²+8x+16+9-x²=1

    ⇔(x²-x²)+8x+16+9=1

    ⇔8x=-24

    ⇔x=-3

    vậy S={-3}

    b)$\frac{x+4}{2}$ -$\frac{x-1}{3}$ =1

    ⇔ $\frac{3(x+4)-2(x-1)}{6}$ =$\frac{6}{6}$ 

    ⇔3x+12-2x+2=6

    ⇔3x-2x=6-12-2

    ⇔x=-8

    vậy S={-8}

    c)(x-2)²=9

    ⇒(x-2)²=3²

    ⇒ \(\left[ \begin{array}{1}x-2=3\\x-2=-3\end{array} \right.\) 

    ⇒\(\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.\) 

    vậy s={5,-1}

    xin 5sao và tlhn nha bạn:3

    !học tốt nha!

    @Dinosieucute

     

    Bình luận
  2. `a)(x+4)^2+(3+x)(3-x)=1`

    `⇔x^2+8x+16+9-x^2=1`

    `⇔(x^2-x^2)+8x+16+9=1`

    `⇔8x=-24`

    `⇔x=-3`

    Vậy `S={-3}`

    `b)(x+4)/2-(x-1)/3=1`

    `⇔(3(x+4)-2(x-1))/6=6/6`

    `⇔3x+12-2x+2=6`

    `⇔3x-2x=6-12-2`

    `⇔x=-8`

    Vậy `S={-8}`

    `c)(x-2)^2=9`

    `→(x-2)^2=3^2`

    `→` \(\left[ \begin{array}{l}x-2=3\\x-2=-3\end{array} \right.\) 

    `→` \(\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.\) 

    Vậy `S={5;-1}`

    Bình luận

Viết một bình luận