a/ x+4/5-x+4=x/3-x-2/2 b/ (x+1).(x+2)=(2-x).(x+2)

a/ x+4/5-x+4=x/3-x-2/2
b/ (x+1).(x+2)=(2-x).(x+2)

0 bình luận về “a/ x+4/5-x+4=x/3-x-2/2 b/ (x+1).(x+2)=(2-x).(x+2)”

  1. `x+4/5-x+4=x/3-x-2/2`

    `<=>x+4/5+4=x/3-1`

    `<=>2x=-87/5`

    `<=>x=-87/10`

    `(x+1)(x+2)=(2-x)(x+2)`

    `<=>x^2+2x+x+2=4-x^2`

    `<=>2x^2+3x-2=0`

    `<=>(x+2)(2x-1)=0`

    `<=>x=-2` hoặc `x=1/2`

     

    Bình luận
  2. a, $x+\dfrac{4}{5}-x+4=\dfrac{x}{3}-x-\dfrac{2}{2}$

    $<=>x+\dfrac{24}{5}=\dfrac{x}{3}-1$

    $<=>\dfrac{2}{3}x=\dfrac{-29}{5}$

    $<=>x=\dfrac{-87}{10}$

    b, $<=>(x+2)(x+1-2+x)=0$

    $<=>(x+2)(2x-1)=0$

    $<=>x+2=0$ hoặc $2x-1=0$

    $<=>x=-2$ hoặc $x=\dfrac{1}{2}$

    Bình luận

Viết một bình luận