a/ x+4/5-x+4=x/3-x-2/2 b/ (x+1).(x+2)=(2-x).(x+2) 02/07/2021 Bởi Faith a/ x+4/5-x+4=x/3-x-2/2 b/ (x+1).(x+2)=(2-x).(x+2)
`x+4/5-x+4=x/3-x-2/2` `<=>x+4/5+4=x/3-1` `<=>2x=-87/5` `<=>x=-87/10` `(x+1)(x+2)=(2-x)(x+2)` `<=>x^2+2x+x+2=4-x^2` `<=>2x^2+3x-2=0` `<=>(x+2)(2x-1)=0` `<=>x=-2` hoặc `x=1/2` Bình luận
a, $x+\dfrac{4}{5}-x+4=\dfrac{x}{3}-x-\dfrac{2}{2}$ $<=>x+\dfrac{24}{5}=\dfrac{x}{3}-1$ $<=>\dfrac{2}{3}x=\dfrac{-29}{5}$ $<=>x=\dfrac{-87}{10}$ b, $<=>(x+2)(x+1-2+x)=0$ $<=>(x+2)(2x-1)=0$ $<=>x+2=0$ hoặc $2x-1=0$ $<=>x=-2$ hoặc $x=\dfrac{1}{2}$ Bình luận
`x+4/5-x+4=x/3-x-2/2`
`<=>x+4/5+4=x/3-1`
`<=>2x=-87/5`
`<=>x=-87/10`
`(x+1)(x+2)=(2-x)(x+2)`
`<=>x^2+2x+x+2=4-x^2`
`<=>2x^2+3x-2=0`
`<=>(x+2)(2x-1)=0`
`<=>x=-2` hoặc `x=1/2`
a, $x+\dfrac{4}{5}-x+4=\dfrac{x}{3}-x-\dfrac{2}{2}$
$<=>x+\dfrac{24}{5}=\dfrac{x}{3}-1$
$<=>\dfrac{2}{3}x=\dfrac{-29}{5}$
$<=>x=\dfrac{-87}{10}$
b, $<=>(x+2)(x+1-2+x)=0$
$<=>(x+2)(2x-1)=0$
$<=>x+2=0$ hoặc $2x-1=0$
$<=>x=-2$ hoặc $x=\dfrac{1}{2}$