a,|x-(-5)|=2020 b,(-5)chia hết cho(x-2) c,6 chia hết cho(x+1) d,(3x-2)chia hết(x+1) Ai giúp mik với 14/07/2021 Bởi Sarah a,|x-(-5)|=2020 b,(-5)chia hết cho(x-2) c,6 chia hết cho(x+1) d,(3x-2)chia hết(x+1) Ai giúp mik với
a,|x-(-5)|=2020 ⇒|x+5|=2020 ⇒\(\left[ \begin{array}{l}x+5=2020\\x+5=-2020\end{array} \right.\) =>\(\left[ \begin{array}{l}x=2015\\x=-2025\end{array} \right.\) Vậy x=2015 hoặc x=-2015 b, Ta có: -5$\vdots$x-2 ⇒x-2∈Ư(5)={±1;±5} x-2=1⇒x=3 x-2=-1⇒x=1 x-2=5⇒x=7 x-2=-5⇒x=-3 Vậy x∈{3;1;7;-3} c, Ta có: 6$\vdots$x+1 ⇒x+1∈Ư(6)={±1;±2;±3;±6} x+1=1⇒x=0 x+1=-1⇒x=-2 x+1=-2⇒x=-3 x+1=2⇒x=1 x+1=3⇒x=2 x+1=-3⇒x=-4 x+1=-6⇒x=-7 x+1=6⇒x=5 Vậy x∈{0;-2;-3;1;2;-4;-7;5} d, Ta có: 3x-2$\vdots$x+1 ⇒3(x+1)-5$\vdots$x+1 ⇒x+1∈Ư(5)={±1;±5} x+1=1⇒x=0 x+1=-1⇒x=-2 x+1=5⇒x=4 x+1=-5⇒x=-6 Vậy x∈{0;-2;4;-6} Bình luận
a/ | x – (-5) | = 2020 ⇒ | x + 5 | = 2020 ⇒ \(\left[ \begin{array}{l}x+5=2020\\x+5=-2020\end{array} \right.\) ⇒ \(\left[ \begin{array}{l}x=2015\\x=-2015\end{array} \right.\) Vậy… — b/ (-5) ⋮ ( x – 2 ) ⇒ ( x – 2 ) ∈ Ư(-5) ⇒ ( x – 2 ) ∈ { ±1; ±5 } ⇒ x ∈ { ±3; 1; 7 } Vậy… — c/ 6 ⋮ ( x + 1 ) ⇒ ( x + 1 ) ∈ Ư(6) ⇒ ( x + 1 ) ∈ { ±1; ±2; ±3; ± 6 } ⇒ x ∈ { 0; ±2; -3; 1; -4; -7; 5 } Vậy… — d/ ( 3x – 2 ) ⋮ ( x + 1 ) ⇒ [ 3( x + 1 ) – 5 ] ⋮ ( x + 1 ) Vì 3( x + 1 ) ⋮ ( x + 1 ) nên để [ 3( x + 1 ) – 5 ] ⋮ ( x + 1 ) thì 5 ⋮ ( x + 1 ) ⇒ ( x + 1 ) ∈ Ư(5) ⇒ ( x + 1 ) ∈ { ±1; ±5 } ⇒ x ∈ { 0; -2; 4; -6 } Vậy… Bình luận
a,|x-(-5)|=2020
⇒|x+5|=2020
⇒\(\left[ \begin{array}{l}x+5=2020\\x+5=-2020\end{array} \right.\) =>\(\left[ \begin{array}{l}x=2015\\x=-2025\end{array} \right.\)
Vậy x=2015 hoặc x=-2015
b, Ta có: -5$\vdots$x-2
⇒x-2∈Ư(5)={±1;±5}
x-2=1⇒x=3
x-2=-1⇒x=1
x-2=5⇒x=7
x-2=-5⇒x=-3
Vậy x∈{3;1;7;-3}
c, Ta có: 6$\vdots$x+1
⇒x+1∈Ư(6)={±1;±2;±3;±6}
x+1=1⇒x=0
x+1=-1⇒x=-2
x+1=-2⇒x=-3
x+1=2⇒x=1
x+1=3⇒x=2
x+1=-3⇒x=-4
x+1=-6⇒x=-7
x+1=6⇒x=5
Vậy x∈{0;-2;-3;1;2;-4;-7;5}
d, Ta có: 3x-2$\vdots$x+1
⇒3(x+1)-5$\vdots$x+1
⇒x+1∈Ư(5)={±1;±5}
x+1=1⇒x=0
x+1=-1⇒x=-2
x+1=5⇒x=4
x+1=-5⇒x=-6
Vậy x∈{0;-2;4;-6}
a/ | x – (-5) | = 2020
⇒ | x + 5 | = 2020
⇒ \(\left[ \begin{array}{l}x+5=2020\\x+5=-2020\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}x=2015\\x=-2015\end{array} \right.\)
Vậy…
—
b/ (-5) ⋮ ( x – 2 )
⇒ ( x – 2 ) ∈ Ư(-5)
⇒ ( x – 2 ) ∈ { ±1; ±5 }
⇒ x ∈ { ±3; 1; 7 }
Vậy…
—
c/ 6 ⋮ ( x + 1 )
⇒ ( x + 1 ) ∈ Ư(6)
⇒ ( x + 1 ) ∈ { ±1; ±2; ±3; ± 6 }
⇒ x ∈ { 0; ±2; -3; 1; -4; -7; 5 }
Vậy…
—
d/ ( 3x – 2 ) ⋮ ( x + 1 )
⇒ [ 3( x + 1 ) – 5 ] ⋮ ( x + 1 )
Vì 3( x + 1 ) ⋮ ( x + 1 ) nên để [ 3( x + 1 ) – 5 ] ⋮ ( x + 1 ) thì 5 ⋮ ( x + 1 )
⇒ ( x + 1 ) ∈ Ư(5)
⇒ ( x + 1 ) ∈ { ±1; ±5 }
⇒ x ∈ { 0; -2; 4; -6 }
Vậy…