a) -5+|3x-1|+6=|-4| b) $(x-1)^{2}$= $(x-1)^{4}$

a) -5+|3x-1|+6=|-4|
b) $(x-1)^{2}$= $(x-1)^{4}$

0 bình luận về “a) -5+|3x-1|+6=|-4| b) $(x-1)^{2}$= $(x-1)^{4}$”

  1. Đáp án :

    `a)x∈{-2/3; 4/3}`

    `b)x∈{0;1;2}`

    Giải thích các bước giải :

    `a)-5+|3x-1|+6=|-4|`

    `<=>|3x-1|+6-5=4`

    `<=>|3x-1|=4-1`

    `<=>|3x-1|=3`

    `<=>`\(\left[ \begin{array}{l}3x-1=3\\3x-1=-3\end{array} \right.\)

    `<=>`\(\left[ \begin{array}{l}3x=4\\3x=-2\end{array} \right.\)

    `<=>`\(\left[ \begin{array}{l}x=\frac{4}{3}\\3x=\frac{-2}{3}\end{array} \right.\)

    Vậy `x∈{-2/3; 4/3}`

    `b)(x-1)^2=(x-1)^4`

    `<=>(x-1)^2-(x-1)^4=0`

    `<=>(x-1)^2×[1-(x-1)^2]=0`

    `<=>(x-1)^2(1-x+1)(1+x-1)=0`

    `<=>x(2-x)(x-1)^2=0`

    `<=>`\(\left[ \begin{array}{l}x=0\\2-x=0\\(x-1)^2=0\end{array} \right.\)

    `<=>`\(\left[ \begin{array}{l}x=0\\x=2\\x-1=0\end{array} \right.\)

    `<=>`(\left[ \begin{array}{l}x=0\\x=2\\x=1\end{array} \right.\)

    Vậy `x∈{0;1;2}`

    Bình luận
  2. a) `-5+|3x-1|+6=|-4|`

    `-5+|3x-1|+6=4`

    `|3x-1|=3`

    TH1: `3x-1=3`

    `3x=4`

    `x=4/3`

    TH2: `3x-1=-3`

    `3x=-2`

    `x=-2/3`

    Vậy `x=4/3 ; x=-2/3`

    b) `(x-1)^2=(x-1)^4`

    `(x-1)=(x-1)^2`

    TH1: `x-1 = (x-1)^2`

    ` (x-1)^2-(x-1)=0`

    `(x-1)(x-1-1)=0`

    `(x-1)(x-2)=0`

    `x=1 \vee x=2`

    TH2: `-(x-1)=(x-1)^2`

    `(x-1)^2+(x-1)=0`

    `(x-1)(x-1+1)=0`

    `x(x-1)=0`

    `x = 0 \vee x=1`

    Vậy `x=0 ; x=1 ; x=2`

    Bình luận

Viết một bình luận