a) -5+|3x-1|+6=|-4| b) $(x-1)^{2}$= $(x-1)^{4}$ 26/10/2021 Bởi Athena a) -5+|3x-1|+6=|-4| b) $(x-1)^{2}$= $(x-1)^{4}$
Đáp án : `a)x∈{-2/3; 4/3}` `b)x∈{0;1;2}` Giải thích các bước giải : `a)-5+|3x-1|+6=|-4|` `<=>|3x-1|+6-5=4` `<=>|3x-1|=4-1` `<=>|3x-1|=3` `<=>`\(\left[ \begin{array}{l}3x-1=3\\3x-1=-3\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}3x=4\\3x=-2\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=\frac{4}{3}\\3x=\frac{-2}{3}\end{array} \right.\) Vậy `x∈{-2/3; 4/3}` `b)(x-1)^2=(x-1)^4` `<=>(x-1)^2-(x-1)^4=0` `<=>(x-1)^2×[1-(x-1)^2]=0` `<=>(x-1)^2(1-x+1)(1+x-1)=0` `<=>x(2-x)(x-1)^2=0` `<=>`\(\left[ \begin{array}{l}x=0\\2-x=0\\(x-1)^2=0\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=0\\x=2\\x-1=0\end{array} \right.\) `<=>`(\left[ \begin{array}{l}x=0\\x=2\\x=1\end{array} \right.\) Vậy `x∈{0;1;2}` Bình luận
a) `-5+|3x-1|+6=|-4|` `-5+|3x-1|+6=4` `|3x-1|=3` TH1: `3x-1=3` `3x=4` `x=4/3` TH2: `3x-1=-3` `3x=-2` `x=-2/3` Vậy `x=4/3 ; x=-2/3` b) `(x-1)^2=(x-1)^4` `(x-1)=(x-1)^2` TH1: `x-1 = (x-1)^2` ` (x-1)^2-(x-1)=0` `(x-1)(x-1-1)=0` `(x-1)(x-2)=0` `x=1 \vee x=2` TH2: `-(x-1)=(x-1)^2` `(x-1)^2+(x-1)=0` `(x-1)(x-1+1)=0` `x(x-1)=0` `x = 0 \vee x=1` Vậy `x=0 ; x=1 ; x=2` Bình luận
Đáp án :
`a)x∈{-2/3; 4/3}`
`b)x∈{0;1;2}`
Giải thích các bước giải :
`a)-5+|3x-1|+6=|-4|`
`<=>|3x-1|+6-5=4`
`<=>|3x-1|=4-1`
`<=>|3x-1|=3`
`<=>`\(\left[ \begin{array}{l}3x-1=3\\3x-1=-3\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}3x=4\\3x=-2\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\frac{4}{3}\\3x=\frac{-2}{3}\end{array} \right.\)
Vậy `x∈{-2/3; 4/3}`
`b)(x-1)^2=(x-1)^4`
`<=>(x-1)^2-(x-1)^4=0`
`<=>(x-1)^2×[1-(x-1)^2]=0`
`<=>(x-1)^2(1-x+1)(1+x-1)=0`
`<=>x(2-x)(x-1)^2=0`
`<=>`\(\left[ \begin{array}{l}x=0\\2-x=0\\(x-1)^2=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x=2\\x-1=0\end{array} \right.\)
`<=>`(\left[ \begin{array}{l}x=0\\x=2\\x=1\end{array} \right.\)
Vậy `x∈{0;1;2}`
a) `-5+|3x-1|+6=|-4|`
`-5+|3x-1|+6=4`
`|3x-1|=3`
TH1: `3x-1=3`
`3x=4`
`x=4/3`
TH2: `3x-1=-3`
`3x=-2`
`x=-2/3`
Vậy `x=4/3 ; x=-2/3`
b) `(x-1)^2=(x-1)^4`
`(x-1)=(x-1)^2`
TH1: `x-1 = (x-1)^2`
` (x-1)^2-(x-1)=0`
`(x-1)(x-1-1)=0`
`(x-1)(x-2)=0`
`x=1 \vee x=2`
TH2: `-(x-1)=(x-1)^2`
`(x-1)^2+(x-1)=0`
`(x-1)(x-1+1)=0`
`x(x-1)=0`
`x = 0 \vee x=1`
Vậy `x=0 ; x=1 ; x=2`