a, (x+5)(3x-12)>0 b, 5x-3chia het x+1 c, 4x+7chia het 3x-1 05/10/2021 Bởi Faith a, (x+5)(3x-12)>0 b, 5x-3chia het x+1 c, 4x+7chia het 3x-1
Đáp án: Giải thích các bước giải: `a)` `(x + 5).(3x – 12) > 0` `=> 4.(x + 5).(x – 4) > 0` `TH1:` $\begin{cases} x+5>0\\x-4>0\end{cases}$`<=>` $\begin{cases} x>-5\\x>4\end{cases}$`=> x > 4``TH2:`$\begin{cases} x+5<0\\x-4<0\end{cases}$`<=>`$\begin{cases}x<-5\\x<4\end{cases}$`=> x<-5`Vậy `x > 4` hoặc `x < -5` `b) 5x-3 vdots x+1` `=> 5x+5-8 vdots x+1` `=> 8 vdots x+1` `=> x+1 in Ư(8)={-8;-4;-2;-1;1;2;4;8}` `=> x in {-9;-5;-3;-2;0;1;3;7}` 4x+7chia het 3x-1 `c) 4x+7 vdots 3x-1` `=> 12x+21 vdots 3x-1` `=> 4(3x-1)+25 vdots 3x-1` `=> 25 vdots 3x-1` `=> 3x-1 in Ư(25)={-25;-5;-1;1;5;25}` `=> 3x in {-24;-4;0;2;6;26}` `=> x in {-8;0;2}` Bình luận
Đáp án: a) \(\left[ \begin{array}{l}x > \dfrac{4}{3}\\x < – 5\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)\left( {x + 5} \right)\left( {3x – 4} \right) > 0\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 5 > 0\\3x – 4 > 0\end{array} \right.\\\left\{ \begin{array}{l}x + 5 < 0\\3x – 4 < 0\end{array} \right.\end{array} \right. \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x > – 5\\x > \dfrac{4}{3}\end{array} \right.\\\left\{ \begin{array}{l}x < – 5\\x < \dfrac{4}{3}\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}x > \dfrac{4}{3}\\x < – 5\end{array} \right.\\b)5x – 3 \vdots x + 1\\ \to 5\left( {x + 1} \right) – 8 \vdots x + 1\\ \to x + 1 \in U\left( 8 \right)\\ \to \left[ \begin{array}{l}x + 1 = 8\\x + 1 = – 8\\x + 1 = 4\\x + 1 = – 4\\x + 1 = 2\\x + 1 = – 2\\x + 1 = 1\\x + 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 7\\x = – 9\\x = 3\\x = – 5\\x = 1\\x = – 3\\x = 0\\x = – 2\end{array} \right.\\c)4x + 7 \vdots 3x – 1\\ \to 12x + 21 \vdots 3x – 1\\ \to 4\left( {3x – 1} \right) + 25 \vdots 3x – 1\\ \to 25 \vdots 3x – 1\\ \to 3x – 1 \in U\left( {25} \right)\\ \to \left[ \begin{array}{l}3x – 1 = 25\\3x – 1 = – 25\\3x – 1 = 5\\3x – 1 = – 5\\3x – 1 = 1\\3x – 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = \dfrac{{26}}{3}\\x = – 8\\x = 2\\x = – \dfrac{4}{3}\\x = \dfrac{2}{3}\\x = 0\end{array} \right.\end{array}\) Bình luận
Đáp án:
Giải thích các bước giải:
`a)`
`(x + 5).(3x – 12) > 0`
`=> 4.(x + 5).(x – 4) > 0`
`TH1:`
$\begin{cases} x+5>0\\x-4>0\end{cases}$`<=>` $\begin{cases} x>-5\\x>4\end{cases}$`=> x > 4`
`TH2:`
$\begin{cases} x+5<0\\x-4<0\end{cases}$`<=>`$\begin{cases}x<-5\\x<4\end{cases}$`=> x<-5`
Vậy `x > 4` hoặc `x < -5`
`b) 5x-3 vdots x+1`
`=> 5x+5-8 vdots x+1`
`=> 8 vdots x+1`
`=> x+1 in Ư(8)={-8;-4;-2;-1;1;2;4;8}`
`=> x in {-9;-5;-3;-2;0;1;3;7}`
4x+7chia het 3x-1
`c) 4x+7 vdots 3x-1`
`=> 12x+21 vdots 3x-1`
`=> 4(3x-1)+25 vdots 3x-1`
`=> 25 vdots 3x-1`
`=> 3x-1 in Ư(25)={-25;-5;-1;1;5;25}`
`=> 3x in {-24;-4;0;2;6;26}`
`=> x in {-8;0;2}`
Đáp án:
a) \(\left[ \begin{array}{l}
x > \dfrac{4}{3}\\
x < – 5
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left( {x + 5} \right)\left( {3x – 4} \right) > 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 5 > 0\\
3x – 4 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 5 < 0\\
3x – 4 < 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x > – 5\\
x > \dfrac{4}{3}
\end{array} \right.\\
\left\{ \begin{array}{l}
x < – 5\\
x < \dfrac{4}{3}
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
x > \dfrac{4}{3}\\
x < – 5
\end{array} \right.\\
b)5x – 3 \vdots x + 1\\
\to 5\left( {x + 1} \right) – 8 \vdots x + 1\\
\to x + 1 \in U\left( 8 \right)\\
\to \left[ \begin{array}{l}
x + 1 = 8\\
x + 1 = – 8\\
x + 1 = 4\\
x + 1 = – 4\\
x + 1 = 2\\
x + 1 = – 2\\
x + 1 = 1\\
x + 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 7\\
x = – 9\\
x = 3\\
x = – 5\\
x = 1\\
x = – 3\\
x = 0\\
x = – 2
\end{array} \right.\\
c)4x + 7 \vdots 3x – 1\\
\to 12x + 21 \vdots 3x – 1\\
\to 4\left( {3x – 1} \right) + 25 \vdots 3x – 1\\
\to 25 \vdots 3x – 1\\
\to 3x – 1 \in U\left( {25} \right)\\
\to \left[ \begin{array}{l}
3x – 1 = 25\\
3x – 1 = – 25\\
3x – 1 = 5\\
3x – 1 = – 5\\
3x – 1 = 1\\
3x – 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = \dfrac{{26}}{3}\\
x = – 8\\
x = 2\\
x = – \dfrac{4}{3}\\
x = \dfrac{2}{3}\\
x = 0
\end{array} \right.
\end{array}\)