a)(5.3^21+4.3^22):(3^19.5^2-3^19.2^30) b)(2x+1).(y-5)=12 c)(2x+1).(y^2-5)=12 08/08/2021 Bởi Iris a)(5.3^21+4.3^22):(3^19.5^2-3^19.2^30) b)(2x+1).(y-5)=12 c)(2x+1).(y^2-5)=12
Giải thích các bước giải: 2x+1 là số tự nhiên lẻ nên ta có: \(\begin{array}{l}b,\\\left( {2x + 1} \right)\left( {y – 5} \right) = 12\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}2x + 1 = 1\\y – 5 = 12\end{array} \right.\\\left\{ \begin{array}{l}2x + 1 = 3\\y – 5 = 4\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 0\\y = 17\end{array} \right.\\\left\{ \begin{array}{l}x = 1\\y = 9\end{array} \right.\end{array} \right.\\b,\\\left( {2x + 1} \right)\left( {{y^2} – 5} \right) = 12\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}2x + 1 = 1\\{y^2} – 5 = 12\end{array} \right.\\\left\{ \begin{array}{l}2x + 1 = 3\\{y^2} – 5 = 4\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 0\\{y^2} = 17\end{array} \right.\\\left\{ \begin{array}{l}x = 1\\{y^2} = 9\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\end{array}\) Bình luận
Giải thích các bước giải:
2x+1 là số tự nhiên lẻ nên ta có:
\(\begin{array}{l}
b,\\
\left( {2x + 1} \right)\left( {y – 5} \right) = 12\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
2x + 1 = 1\\
y – 5 = 12
\end{array} \right.\\
\left\{ \begin{array}{l}
2x + 1 = 3\\
y – 5 = 4
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 0\\
y = 17
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 1\\
y = 9
\end{array} \right.
\end{array} \right.\\
b,\\
\left( {2x + 1} \right)\left( {{y^2} – 5} \right) = 12\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
2x + 1 = 1\\
{y^2} – 5 = 12
\end{array} \right.\\
\left\{ \begin{array}{l}
2x + 1 = 3\\
{y^2} – 5 = 4
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 0\\
{y^2} = 17
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 1\\
{y^2} = 9
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1\\
y = 3
\end{array} \right.
\end{array}\)