a,5+x/3x-6-2x-3/2x-4=1/2 b,x(x+1).(x+3/4)=0 c,x^2/x+2=x-3-x/x+2 d,(x+1/2).(3/4-2x)=0 e,x+3/x-3-x-3/x+3=9/x^2-9 05/10/2021 Bởi Melody a,5+x/3x-6-2x-3/2x-4=1/2 b,x(x+1).(x+3/4)=0 c,x^2/x+2=x-3-x/x+2 d,(x+1/2).(3/4-2x)=0 e,x+3/x-3-x-3/x+3=9/x^2-9
Đáp án + Giải thích các bước giải: `a)` `(5+x)/(3x-6)-(2x-3)/(2x-4)=1/2` `(x ne 2)` `<=> (5+x)/(3(x-2))-(2x-3)/(2(x-2))=1/2` `<=> (2(5+x)-3(2x-3))/(6(x-2))=(3(x-2))/(6(x-2))` `=> 2(5+x)-3(2x-3)=3(x-2)` `<=> 10+2x-6x+9=3x-6` `<=> 19-4x=3x-6` `<=> -4x-3x=-6-19` `<=> -7x=-25` `<=> x=25/7 (TM)` `=> S={25/7}` $b) x(x+1).(x+\dfrac{3}{4})=0 \\ ⇔ \left[ \begin{array}{l}x=0\\x+1=0\\x+\dfrac{3}{4}=0\end{array} \right.\\⇔\left[ \begin{array}{l}x=0\\x=-1\\x=-\dfrac{3}{4}\end{array} \right.\\ $ `⇒S={0;-1;-\frac{3}{4}}` `c)` `(x^2)/(x+2)=x-(3-x)/(x+2)` `(x ne -2)` `<=> (x^2)/(x+2)=(x(x+2)-3+x)/(x+2)` `=> x^2=x^2+2x-3+x` `<=> x^2+3x-3=x^2` `<=> 3x=3` `<=> x=1 (TM)` `=> S={1}` `d)` `(x+1/2).(3/4-2x)=0` `<=>` \(\left[ \begin{array}{l}x+\dfrac{1}{2}=0\\\dfrac{3}{4}-2x=0\end{array}\right.\) `<=>` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{3}{8}\end{array} \right.\)`=> S={1/2;3/8}` `e)` `(x+3)/(x-3)-(x-3)/(x+3)=9/(x^2-9)` `(x ne +-3)` `<=> ((x+3)^2-(x-3)^2)/(x^2-9)=9/(x^2-9)` `=> (x+3)^2-(x-3)^2=9` `<=> 12x=9` `<=> x=3/4 (TM)` `=> S={3/4}` Bình luận
Đáp án: Giải thích các bước giải: `a)` `(5+x)/(3x-6)-(2x-3)/(2x-4)=1/2` (đk: `x\ne2`) `<=>(x+5)/(3(x-2))-(2x-3)/(2(x-2))=1/2` `<=>(2(x+5)-3(2x-3))/(6(x-2))=(3(x-2))/(6(x-2))` `=>2x+10-6x+9=3x-6` `<=>-4x+19=3x-6` `<=>-7x=-25` `<=>x=25/7` (tmđk) Vậy `S={25/7}` `b)` `x(x+1)(x+3/4)=0` `<=>` \(\left[ \begin{array}{l}x=0\\x+1=0\\x+\dfrac{3}{4}=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=-1\\x=-\dfrac{4}{3}\end{array} \right.\) Vậy `S={0;-1;-4/3}` `c)` `(x^2)/(x+2)=x-(3-x)/(x+2)` (đk: `x\ne-2`) `<=>(x^2)/(x+2)=(x(x+2)-3+x)/(x+2)` `=>x^2=x^2+2x-3+x` `<=>x^2+3x-3=x^2` `<=>3x=3` `<=>x=1` (tmđk) Vậy `S={1}` `d)` `(x+1/2)(3/4-2x)=0` `<=>` \(\left[ \begin{array}{l}x+\dfrac{1}{2}=0\\\dfrac{3}{4}-2x=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{3}{8}\end{array} \right.\) Vậy `S={-1/2;3/8}` `e)` `(x+3)/(x-3)-(x-3)/(x+3)=9/(x^2-9)` (đk: `x\ne+-3`) `<=>((x+3)^2-(x-3)^2)/(x^2-9)=9/(x^2-9)` `=>x^2+6x+9-x^2+6x-9=9` `<=>12x=9` `<=>x=3/4` (tmđk) Vậy `S={3/4}` Bình luận
Đáp án + Giải thích các bước giải:
`a)`
`(5+x)/(3x-6)-(2x-3)/(2x-4)=1/2` `(x ne 2)`
`<=> (5+x)/(3(x-2))-(2x-3)/(2(x-2))=1/2`
`<=> (2(5+x)-3(2x-3))/(6(x-2))=(3(x-2))/(6(x-2))`
`=> 2(5+x)-3(2x-3)=3(x-2)`
`<=> 10+2x-6x+9=3x-6`
`<=> 19-4x=3x-6`
`<=> -4x-3x=-6-19`
`<=> -7x=-25`
`<=> x=25/7 (TM)`
`=> S={25/7}`
$b) x(x+1).(x+\dfrac{3}{4})=0 \\ ⇔ \left[ \begin{array}{l}x=0\\x+1=0\\x+\dfrac{3}{4}=0\end{array} \right.\\⇔\left[ \begin{array}{l}x=0\\x=-1\\x=-\dfrac{3}{4}\end{array} \right.\\ $ `⇒S={0;-1;-\frac{3}{4}}`
`c)`
`(x^2)/(x+2)=x-(3-x)/(x+2)` `(x ne -2)`
`<=> (x^2)/(x+2)=(x(x+2)-3+x)/(x+2)`
`=> x^2=x^2+2x-3+x`
`<=> x^2+3x-3=x^2`
`<=> 3x=3`
`<=> x=1 (TM)`
`=> S={1}`
`d)`
`(x+1/2).(3/4-2x)=0`
`<=>` \(\left[ \begin{array}{l}x+\dfrac{1}{2}=0\\\dfrac{3}{4}-2x=0\end{array}\right.\) `<=>` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{3}{8}\end{array} \right.\)`=> S={1/2;3/8}`
`e)`
`(x+3)/(x-3)-(x-3)/(x+3)=9/(x^2-9)` `(x ne +-3)`
`<=> ((x+3)^2-(x-3)^2)/(x^2-9)=9/(x^2-9)`
`=> (x+3)^2-(x-3)^2=9`
`<=> 12x=9`
`<=> x=3/4 (TM)`
`=> S={3/4}`
Đáp án:
Giải thích các bước giải:
`a)`
`(5+x)/(3x-6)-(2x-3)/(2x-4)=1/2` (đk: `x\ne2`)
`<=>(x+5)/(3(x-2))-(2x-3)/(2(x-2))=1/2`
`<=>(2(x+5)-3(2x-3))/(6(x-2))=(3(x-2))/(6(x-2))`
`=>2x+10-6x+9=3x-6`
`<=>-4x+19=3x-6`
`<=>-7x=-25`
`<=>x=25/7` (tmđk)
Vậy `S={25/7}`
`b)`
`x(x+1)(x+3/4)=0`
`<=>` \(\left[ \begin{array}{l}x=0\\x+1=0\\x+\dfrac{3}{4}=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=-1\\x=-\dfrac{4}{3}\end{array} \right.\)
Vậy `S={0;-1;-4/3}`
`c)`
`(x^2)/(x+2)=x-(3-x)/(x+2)` (đk: `x\ne-2`)
`<=>(x^2)/(x+2)=(x(x+2)-3+x)/(x+2)`
`=>x^2=x^2+2x-3+x`
`<=>x^2+3x-3=x^2`
`<=>3x=3`
`<=>x=1` (tmđk)
Vậy `S={1}`
`d)`
`(x+1/2)(3/4-2x)=0`
`<=>` \(\left[ \begin{array}{l}x+\dfrac{1}{2}=0\\\dfrac{3}{4}-2x=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{3}{8}\end{array} \right.\)
Vậy `S={-1/2;3/8}`
`e)`
`(x+3)/(x-3)-(x-3)/(x+3)=9/(x^2-9)` (đk: `x\ne+-3`)
`<=>((x+3)^2-(x-3)^2)/(x^2-9)=9/(x^2-9)`
`=>x^2+6x+9-x^2+6x-9=9`
`<=>12x=9`
`<=>x=3/4` (tmđk)
Vậy `S={3/4}`