`A=6x^2-3xy^2` `B=x^2+y^2-2xy^2` Tính `A+B` ; `A-B` 02/09/2021 Bởi Josie `A=6x^2-3xy^2` `B=x^2+y^2-2xy^2` Tính `A+B` ; `A-B`
\(\begin{array}{l}A = 6x^2 – 3xy^2\\B = x^2 + y^2 – 2xy^2\\+)\quad A + B = 6x^2 – 3xy^2 + x^2 + y^2 – 2xy^2\\\Leftrightarrow A + B = (6x^2 + x^2) – (3xy^2 + 2xy^2) + y^2\\\Leftrightarrow A + B = 7x^2 – 5xy^2 + y^2\\+)\quad A – B = 6x^2 – 3xy^2 – (x^2 + y^2 – 2xy^2)\\\Leftrightarrow A – B = (6x^2 – x^2) – (3xy^2 – 2xy^2) – y^2\\\Leftrightarrow A – B = 5x^2 – xy^2 – y^2\end{array}\) Bình luận
Đáp án: $A=6x^2 -3xy^2$ $B=x^2 +y^2 -2xy^2$ $A+B$ $=6x^2 -3xy^2 +x^2+y^2-2xy^2$ $=7x^2 +y^2-5xy^2$ $A-B$ $=6x^2 -3xy^2 -(x^2+y^2 -2xy^2)$ $=6x^2 -3xy^2 -x^2 -y^2 +2xy^2$ $=5x^2 -y^2 -xy^2$ Bình luận
\(\begin{array}{l}
A = 6x^2 – 3xy^2\\
B = x^2 + y^2 – 2xy^2\\
+)\quad A + B = 6x^2 – 3xy^2 + x^2 + y^2 – 2xy^2\\
\Leftrightarrow A + B = (6x^2 + x^2) – (3xy^2 + 2xy^2) + y^2\\
\Leftrightarrow A + B = 7x^2 – 5xy^2 + y^2\\
+)\quad A – B = 6x^2 – 3xy^2 – (x^2 + y^2 – 2xy^2)\\
\Leftrightarrow A – B = (6x^2 – x^2) – (3xy^2 – 2xy^2) – y^2\\
\Leftrightarrow A – B = 5x^2 – xy^2 – y^2
\end{array}\)
Đáp án:
$A=6x^2 -3xy^2$
$B=x^2 +y^2 -2xy^2$
$A+B$
$=6x^2 -3xy^2 +x^2+y^2-2xy^2$
$=7x^2 +y^2-5xy^2$
$A-B$
$=6x^2 -3xy^2 -(x^2+y^2 -2xy^2)$
$=6x^2 -3xy^2 -x^2 -y^2 +2xy^2$
$=5x^2 -y^2 -xy^2$