a, A= (a+b)^3 + (a – b )^3 b, B= ( x – y )^3 – 3.(x – y ) z^ 2 – z^3 c, C= 6.(c -d ).(c+d) ^2 + 12. ( c-d)^2. (c+ d) + ( c+d)^3 + 8 ( c-d) ^3 d, D = ( u-v)^3 + 3uv(u+v) e, E= 3( c-2d).( c+2d) ^2 + 3(c-2d)^2.(c+2d)+ (c+2d)^3 + (c _ 2d)^ 3
a, A= (a+b)^3 + (a – b )^3 b, B= ( x – y )^3 – 3.(x – y ) z^ 2 – z^3 c, C= 6.(c -d ).(c+d) ^2 + 12. ( c-d)^2. (c+ d) + ( c+d)^3 + 8 ( c-d) ^3 d, D = ( u-v)^3 + 3uv(u+v) e, E= 3( c-2d).( c+2d) ^2 + 3(c-2d)^2.(c+2d)+ (c+2d)^3 + (c _ 2d)^ 3
Đáp án:
$a)
A=2a^3+6ab^2\\
b)
B=(x-y-z)^3\\
c)
C=(3c-d)^3\\
d)
D=u^3+6uv^2-v^3\\
e)
E=8c^3$
Giải thích các bước giải:
$a)
A=(a+b)^3+(a-b)^3\\
=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3\\
=2a^3+6ab^2\\
b)
B=(x-y)^3-3(y-x)^2z+3(x-y)z^2-z^3\\
=(x-y)^3-3(x-y)^2z+3(x-y)z^2-z^3\\
=(x-y-z)^3\\
c)
C=6(c-d).(c+d)^2+12(c-d)^2.(c+d)+(c+d)^3+8(c-d)^3\\
=(c+d)^3+3.(c+d)^2.2(c-d)+3.(c+d).\left [ 2(c-d) \right ]^2+\left [ 2(c-d) \right ]^3\\
=\left [ c+d+2c-2d \right ]^3\\
=(3c-d)^3\\
d)
D=(u-v)^3+3uv(u+v)\\
=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2\\
=u^3+6uv^2-v^3\\
e)
E=3(c-2d).(c+2d)^2+3(c-2d)^2.(c+2d)+(c+2d)^3+(c-2d)^3\\
=(c+2d)^3+3(c+2d)^2(c-2d)+3(c+2d)(c-2d)^2+(c-2d)^3\\
=(c+2d+c-2d)^3\\
=(2c)^3\\
=8c^3$