a) – ( – a + c – d ) – ( c – a + d ) ; b) – ( a + b – c + d ) + ( a – b – c –d ) c) a( b – c – d ) – a ( b + c – d )

a) – ( – a + c – d ) – ( c – a + d ) ; b) – ( a + b – c + d ) + ( a – b – c –d )
c) a( b – c – d ) – a ( b + c – d ) ; d*)(a+ b) ( c + d) – ( a + d ) ( b + c )
e*)( a + b ) ( c – d ) – ( a – b ) ( c + d ) ; f*) ( a + b ) 2 – ( a – b ) 2
Giúp mình với, mình cần gấp

0 bình luận về “a) – ( – a + c – d ) – ( c – a + d ) ; b) – ( a + b – c + d ) + ( a – b – c –d ) c) a( b – c – d ) – a ( b + c – d )”

  1. a) -(-a+c-d)-(c-a+d)=a-c+d-c+a-d=2a-2c

    b) -(a+b-c+d)+(a-b-c-d)=-a-b+c-d+a-b-c-d=-2b-2d

    c) a(b-c-d)-a(b+c-d)=ab-ac-ad-ab-ac+ad=-2ac

    d) (a+b)(c+d)-(a+d)(b+c)=ac+ad+bc+bd-ab-ac-bd-cd=ad+bc-ab-bd

    e) (a+b)(c-d)-(a-b)(c+d)=ac-ad+bc-bd-ac-ad+bc+bd=-2ad+2bc

    f) 2(a+b)-2(a-b)=2a+2b-2a+2b=4b

    Bình luận
  2. ` – ( – a + c – d ) – ( c – a + d )`

    `=a-c+d-c+a-d`

    `=(a+a)-(c+c)+(d-d)`

    `=2a-2c.`

    `( a + b – c + d ) + ( a – b – c –d )`

    `=a+b-c+d+a-b-c-d`

    `=(a+a)+(b-b)-(c+c)+(d-d)`

    `=2a-2c.`

    `a( b – c – d ) – a ( b + c – d )`

    `=a[( b – c – d )- ( b + c – d )]`

    `=a(b-c-d-b-c+d)`

    `=a[(b-b)-(c+c)+(d-d)]`

    `=a.(-2c)`

    `=-2ac.`

    `(a+ b) ( c + d) – ( a + d ) ( b + c )`

    `=(ac+ad+bc+bd)-(ab+ac+db+dc)`

    `=ac+ad+bc+bd-ab-ac-db-dc`

    `=(ac-ac)+(bd-bd)+(ad+bc-ab-cd)`

    `=ad+bc-ab-cd.`

    `( a + b ) ( c – d ) – ( a – b ) ( c + d )`

    `=(ac-ad+bc-bd)-(ac+ad-bc-bd)`

    `=ac-ad+bc-bd-ac-ad+bc+bd`

    `=(ac-ac)-(ad+ad)+(bc+bc)+(bd-bd)`

    `=2bc-2ad.`

    `( a + b )^ 2 – ( a – b )^2`

    `=a^2+2ab+b^2-(a^2-2ab+b^2)`

    `=a^2+2ab+b^2-a^2+2ab-b^2`

    `=(a^2-a^2)+(b^2-b^2)+(2ab+2ab)`

    `=4ab.`

     

    Bình luận

Viết một bình luận