`a;b;c ≥0` `a^n +b^n+c^n=k` tìm`minS=(a^n)/(1+nb^(n+1))+(b^n)/(1+nc^(n+1))+(c^n)/(1+na^(n+1))`

`a;b;c ≥0`
`a^n +b^n+c^n=k`
tìm`minS=(a^n)/(1+nb^(n+1))+(b^n)/(1+nc^(n+1))+(c^n)/(1+na^(n+1))`

0 bình luận về “`a;b;c ≥0` `a^n +b^n+c^n=k` tìm`minS=(a^n)/(1+nb^(n+1))+(b^n)/(1+nc^(n+1))+(c^n)/(1+na^(n+1))`”

  1. $\begin{array}{l} S = \sum\limits_{cyc}^{a,b,c} {\dfrac{{{a^n}}}{{1 + n{b^{n + 1}}}}} \\ S = \sum\limits_{cyc}^{a,b,c} {\left( {{a^n} – \dfrac{{n{a^n}{b^{n + 1}}}}{{1 + n{b^{n + 1}}}}} \right)} \\ S = \sum\limits_{sum}^{a,b,c} {{a^n} – \sum\limits_{cyc}^{a,b,c} {\dfrac{{n{a^n}{b^{n + 1}}}}{{1 + n{b^{n + 1}}}}} } \\ S \ge k – \sum\limits_{cyc}^{a,b,c} {\dfrac{{n{a^n}{b^{n + 1}}}}{{\left( {n + 1} \right)b}} = k – } \dfrac{n}{{n + 1}}\sum\limits_{cyc}^{a,b,c} {{a^n}{b^n}}  \end{array}$

    Mặt khác ta có:

    $\sum\limits_{cyc}^{a,b,c} {{a^n}{b^n} = {a^n}{b^n} + {b^n}{c^n} + {c^n}{a^n}}  \le \dfrac{{{{\left( {{a^n} + {b^n} + {c^n}} \right)}^2}}}{3} = \dfrac{{{k^2}}}{3}$  

    Suy ra $S \ge k – \dfrac{n}{{n + 1}}.\dfrac{{{k^2}}}{3}$

    Dấu bằng xảy ra khi và chỉ khi $a = b = c = \dfrac{k}{3}$

    Bình luận

Viết một bình luận