A=( can x -2/ x-1 – cãn +2 / x+2canx +1 ) . (1-x)^2 /2 rút gọn A , Tim gtln cua A 25/07/2021 Bởi aikhanh A=( can x -2/ x-1 – cãn +2 / x+2canx +1 ) . (1-x)^2 /2 rút gọn A , Tim gtln cua A
Giải thích các bước giải: \(\begin{array}{l} a)(\frac{{\sqrt x – 2}}{{x – 1}} – \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}).\frac{{(1 – x)^2 }}{2} \\ Đk:x \ge 0;x \ne 1 \\ = {\rm{[}}\frac{{\sqrt x – 2}}{{(\sqrt x – 1)(\sqrt x + 1)}} – \frac{{\sqrt x + 2}}{{(\sqrt x + 1)^2 }}{\rm{]}}{\rm{.}}\frac{{{\rm{(x – 1)}}^{\rm{2}} }}{2} \\ = \frac{{(\sqrt x – 2)(\sqrt x + 1) – (\sqrt x + 2)(\sqrt x – 1)}}{{(\sqrt x – 1)(\sqrt x + 1)^2 }}.\frac{{{\rm{[(}}\sqrt {\rm{x}} – 1)(\sqrt x + 1){\rm{]}}^{\rm{2}} }}{2} \\ = \frac{{x – \sqrt x – 2 – x – \sqrt x + 2}}{2}.(\sqrt x – 1) \\ = \frac{{ – 2\sqrt x }}{2}.(\sqrt x – 1) \\ = \sqrt x (1 – \sqrt x ) \\ = \sqrt x – x \\ b)A = \sqrt x – x(x \ge 0;x \ne 1) \\ = – x + \sqrt x – \frac{1}{4} + \frac{1}{4} \\ = – (\sqrt x – \frac{1}{2}) + \frac{1}{4} \le \frac{1}{4} \\ \end{array}\) => Max A=$\frac{1}{4}$ Dấu = xảy ra<=> \(\sqrt x – \frac{1}{2} = 0 \Leftrightarrow x = \frac{1}{4}(tm)\) Bình luận
Giải thích các bước giải:
\(
\begin{array}{l}
a)(\frac{{\sqrt x – 2}}{{x – 1}} – \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}).\frac{{(1 – x)^2 }}{2} \\
Đk:x \ge 0;x \ne 1 \\
= {\rm{[}}\frac{{\sqrt x – 2}}{{(\sqrt x – 1)(\sqrt x + 1)}} – \frac{{\sqrt x + 2}}{{(\sqrt x + 1)^2 }}{\rm{]}}{\rm{.}}\frac{{{\rm{(x – 1)}}^{\rm{2}} }}{2} \\
= \frac{{(\sqrt x – 2)(\sqrt x + 1) – (\sqrt x + 2)(\sqrt x – 1)}}{{(\sqrt x – 1)(\sqrt x + 1)^2 }}.\frac{{{\rm{[(}}\sqrt {\rm{x}} – 1)(\sqrt x + 1){\rm{]}}^{\rm{2}} }}{2} \\
= \frac{{x – \sqrt x – 2 – x – \sqrt x + 2}}{2}.(\sqrt x – 1) \\
= \frac{{ – 2\sqrt x }}{2}.(\sqrt x – 1) \\
= \sqrt x (1 – \sqrt x ) \\
= \sqrt x – x \\
b)A = \sqrt x – x(x \ge 0;x \ne 1) \\
= – x + \sqrt x – \frac{1}{4} + \frac{1}{4} \\
= – (\sqrt x – \frac{1}{2}) + \frac{1}{4} \le \frac{1}{4} \\
\end{array}
\)
=> Max A=$\frac{1}{4}$
Dấu = xảy ra<=> \(
\sqrt x – \frac{1}{2} = 0 \Leftrightarrow x = \frac{1}{4}(tm)
\)