a)Cho A=1/1×2+1/3×4+1/5×6+…..+1/99×100 B=2013/51+2013/52+2013/53+…..+2013/100

a)Cho A=1/1×2+1/3×4+1/5×6+…..+1/99×100
B=2013/51+2013/52+2013/53+…..+2013/100

0 bình luận về “a)Cho A=1/1×2+1/3×4+1/5×6+…..+1/99×100 B=2013/51+2013/52+2013/53+…..+2013/100”

  1. Đáp án:

    ( đpcm )

    Giải thích các bước giải:

    `A= 1/1.2 + 1/3.4 + 1/5.6 +…+1/99.100`

    `= 1 -1/2 + 1/3 – 1/4 +1/5- 1/6+…+1/99-1/100`

    `= (1+1/3 + 1/5+…+1/99) – (1/2 + 1/4 +…+1/100)`

    `= (1+1/2 +1/3 +1/4+…+1/99 +1/100) – 2(1/2 + 1/4 +…+1/100)`

    `= 1/51 + 1/52 +…+1/100`

    $\\$

    `B=2013/51 + 2013/52 + … + 2013/100`

    `=2013 . (1/51 + 1/52 +…+1/100)`

    $\\$

    $\to \rm \dfrac{B}{A}= \dfrac{\dfrac{2013}{51} + \dfrac{2013}{52} +…+\dfrac{2013}{100}}{ \dfrac{1}{51}+\dfrac{1}{52}+…+\dfrac{1}{100}} = \dfrac{2013(\dfrac{1}{51}+\dfrac{1}{52}+…+\dfrac{1}{100})}{\dfrac{1}{51}+\dfrac{1}{52}+…+\dfrac{1}{100}}$

    `= 2013`

    Vậy `B/A` có giá trị là `1` số nguyên

     

    Bình luận
  2. Ta có: `A= 1/1.2 + 1/3.4 + 1/5.6 +…+1/99.100`

    `A= 1 -1/2 + 1/3 – 1/4 +1/5- 1/6+…+1/99-1/100`

    `A= (1+1/3 + 1/5+…+1/99) – (1/2 + 1/4 +…+1/100)`

    `A= (1+1/2 +1/3 +1/4+…+1/99 +1/100) – 2(1/2 + 1/4 +…+1/100)`

    `A= 1+1/2 +1/3 + 1/4+…+1/99 + 1/100 – 1 – 1/2 -…-1/50`

    `A= 1/51 + 1/52 +…+1/100`

    `=> B/A = (2013/51 + 2013/52 + 2013/53+…+2013/100) / ( 1/51 +1/52+…+1/100)`

    `=> B/A = (2013(1/51 + 1/52+ 1/53+…+1/100))/(1/51 +1/52 +…+1/100)`

    `=> B/A = 2013 in Z`

    Vậy `B/A` có giá trị là 1 số nguyên

     

    Bình luận

Viết một bình luận