A=$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+….+\frac{1}{99.100} 01/11/2021 Bởi Gianna A=$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+….+\frac{1}{99.100}
A=$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+….+\frac{1}{99.100}$ A$=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{99}-\frac{1}{100}$ A$=1-\frac{1}{100}$ A$=\frac{99}{100}$ $\nocopy$ Bình luận
A=$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+….+\frac{1}{99.100}$ ⇔`(2-1)/1.2+(3-2)/2.3+(4-3)/3.44+…+(100-99)/99.100` ⇔`2/1.2-1/1.2+3/2.3-2/2.3+4/3.4-3/3.4+…+100/99.100-99/99.100` ⇔`1-1/2+1/2-1/3+1/3-1/4+…+1/99-1/100` ⇔`1-1/100` ⇔`99/100` Bình luận
A=$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+….+\frac{1}{99.100}$
A$=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{99}-\frac{1}{100}$
A$=1-\frac{1}{100}$
A$=\frac{99}{100}$
$\nocopy$
A=$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+….+\frac{1}{99.100}$
⇔`(2-1)/1.2+(3-2)/2.3+(4-3)/3.44+…+(100-99)/99.100`
⇔`2/1.2-1/1.2+3/2.3-2/2.3+4/3.4-3/3.4+…+100/99.100-99/99.100`
⇔`1-1/2+1/2-1/3+1/3-1/4+…+1/99-1/100`
⇔`1-1/100`
⇔`99/100`