a/ $\frac{x+1}{x-1}$ – $\frac{4}{x+1}$ +$\frac{x^{2}-3}{1-x^{2}}$ = 0 b/ $\frac{2}{x^{2}+2x + 1}$ – $\frac{5}{x^{2}-2x+1}$ = $\frac{3}{1-x^{2}}$ c/ $

a/ $\frac{x+1}{x-1}$ – $\frac{4}{x+1}$ +$\frac{x^{2}-3}{1-x^{2}}$ = 0
b/ $\frac{2}{x^{2}+2x + 1}$ – $\frac{5}{x^{2}-2x+1}$ = $\frac{3}{1-x^{2}}$
c/ $\frac{x+1}{x^{2}+x + 1}$ – $\frac{x-1}{x^{2}-x+1}$ = $\frac{x}{x(x^{4}+x^{2}+1)}$

0 bình luận về “a/ $\frac{x+1}{x-1}$ – $\frac{4}{x+1}$ +$\frac{x^{2}-3}{1-x^{2}}$ = 0 b/ $\frac{2}{x^{2}+2x + 1}$ – $\frac{5}{x^{2}-2x+1}$ = $\frac{3}{1-x^{2}}$ c/ $”

  1. $\frac{x+1}{x-1}$ -$\frac{4}{x+1}$ +$\frac{x^2-3}{1-x^2}$ =0                              đk:x khác ±1

    ⇔$\frac{x+1}{x-1}$ -$\frac{4}{x+1}$ +$\frac{x^2-3}{(1-x)(1+x)}$ =0

    ⇔$\frac{x+1}{x-1}$ -$\frac{4}{x+1}$ -$\frac{x^2-3}{(x+1)(x-1)}$ =0

    ⇔$\frac{(x+1)(x+1)-4(x-1)-x^2+3}{(x+1)(x-1)}$=0

    ⇔$\frac{x^2+2x+1-4x+4-x^2+3}{(x+1)(x-1)}$=0

    ⇔$\frac{-2x+8}{(x+1)(x-1)}$=0 ⇔-2x+8=0

    ⇔x=4

    Vậy S=4

    hoặc là Vậy x=4

    b)$\frac{2}{x^2+2x+1}$ -$\frac{5}{x^2-2x+1}$ =$\frac{3}{1-x^2}$

    ⇔$\frac{2}{x^2+2x+1}$ -$\frac{5}{x^2-2x+1}$ -$\frac{3}{1-x^2}$ =0

    ⇔$\frac{2}{(x+1)^2}$ -$\frac{5}{(x-1)^2}$ -$\frac{3}{(1-x)(1+x)}$ =0

    ⇔$\frac{2}{(1+x)^2}$ -$\frac{5}{(1-x)^2}$ -$\frac{3}{(1-x)(1+x)}$ =0

    ⇔$\frac{2(1-x)^2-5(1+x)^2-3(1-x)(1+x)}{(1+x)^2.(1-x)^2}$=0

    ⇔2(1-x)^2-5(1+x)^2-3(1-x)(1+x)=0

    ⇔2-4x+2x^2-5-10x-5x^2-3+3x^2=0

    ⇔-14x-6=0

    ⇔x=-$\frac{3}{7}$

    (kết quả này đg tính lại bạn đừng tin tg quá nhé :/ )

    c)$\frac{x+1}{x^2+x+1}$ -$\frac{x-1}{x^2-x+1}$ =$\frac{x}{x(x^4+x^2+1)}$

    ⇔$\frac{(x+1)(x^2-2x+1)-(x-1)(x^2+2x+1)}{(x^2+x+1)(x^2-2x+1)}$=$\frac{x}{x(x^4+x^2+1)}$

    ⇔$\frac{x^3+1-x^3+1}{x(x^4+x^2+1)}$ =$\frac{x}{x(x^4+x^2+1)}$

    ⇔x^3+1-x^3+1=x

    ⇔2=x

    ⇔x=2

    Vậy x=2

     

    Bình luận

Viết một bình luận