A=$\frac{1}{11}$+$\frac{1}{12}$+$\frac{1}{13}$+….+$\frac{1}{70}$ Chứng minh $\frac{4}{3}$

A=$\frac{1}{11}$+$\frac{1}{12}$+$\frac{1}{13}$+….+$\frac{1}{70}$
Chứng minh $\frac{4}{3}$ { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " A=$ frac{1}{11}$+$ frac{1}{12}$+$ frac{1}{13}$+....+$ frac{1}{70}$ Chứng minh $ frac{4}{3}$

0 bình luận về “A=$\frac{1}{11}$+$\frac{1}{12}$+$\frac{1}{13}$+….+$\frac{1}{70}$ Chứng minh $\frac{4}{3}$<A<2,5”

  1. Giải thích các bước giải:

    $+) A=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}…+\dfrac{1}{70}\\
    =\left ( \dfrac{1}{11}+\dfrac{1}{12}+…+\dfrac{1}{30} \right )+\left ( \dfrac{1}{31}+\dfrac{1}{32}+…+\dfrac{1}{50} \right )+\left ( \dfrac{1}{51}+\dfrac{1}{52}+…+\dfrac{1}{70} \right )\\
    >\dfrac{1}{30}.20+\dfrac{1}{50}.20+\dfrac{1}{70}.20\\
    =\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{2}{7}\\
    =\dfrac{2.35}{105}+\dfrac{2.21}{105}+\dfrac{2.15}{105}\\
    =\dfrac{142}{105}\\
    >\dfrac{140}{105}\\
    =\dfrac{4}{3}\\
    +) A=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}…+\dfrac{1}{70}\\
    =\left ( \dfrac{1}{11}+\dfrac{1}{12}+…+\dfrac{1}{30} \right )+\left ( \dfrac{1}{31}+\dfrac{1}{32}+…+\dfrac{1}{50} \right )+\left ( \dfrac{1}{51}+\dfrac{1}{52}+…+\dfrac{1}{70} \right )\\
    =\left ( \dfrac{1}{11}+…+\dfrac{1}{20} \right )+\left ( \dfrac{1}{21}+…+\dfrac{1}{30} \right )+\left ( \dfrac{1}{31}+…+\dfrac{1}{40} \right )+\left ( \dfrac{1}{41}+…+\dfrac{1}{50} \right )+\left ( \dfrac{1}{51}+…+\dfrac{1}{60} \right )+\left ( \dfrac{1}{61}+…+\dfrac{1}{70} \right )\\
    <\dfrac{1}{11}.10+\dfrac{1}{21}.10+\dfrac{1}{31}.10+\dfrac{1}{41}.10+\dfrac{1}{51}.10+\dfrac{1}{61}.10\\
    <1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\\
    =1+\left ( \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6} \right )+\left ( \dfrac{1}{4}+\dfrac{1}{5} \right )\\
    <2+0,5\\
    =2,5$

    Bình luận

Viết một bình luận