a/$\frac{2}{3.5}$ + $\frac{2}{7.9}$ +…+ $\frac{2}{99.101}$ b/ $\frac{1}{20}$ + $\frac{1}{30}$ + $\frac{1}{42}$ + $\frac{1}{56}$ + $\frac{1}{72}$

a/$\frac{2}{3.5}$ + $\frac{2}{7.9}$ +…+ $\frac{2}{99.101}$
b/ $\frac{1}{20}$ + $\frac{1}{30}$ + $\frac{1}{42}$ + $\frac{1}{56}$ + $\frac{1}{72}$ + $\frac{1}{90}$
c/ $\frac{x+30}{2}$ = $\frac{x-29}{3}$

0 bình luận về “a/$\frac{2}{3.5}$ + $\frac{2}{7.9}$ +…+ $\frac{2}{99.101}$ b/ $\frac{1}{20}$ + $\frac{1}{30}$ + $\frac{1}{42}$ + $\frac{1}{56}$ + $\frac{1}{72}$”

  1. $a$) $\dfrac{2}{3.5} + \dfrac{2}{5.7} + \dfrac{2}{7.9} + ….. + \dfrac{2}{99.101}$

    $ = \dfrac{1}{3} – \dfrac{1}{5} + \dfrac{1}{5} – \dfrac{1}{7} + \dfrac{1}{7} – \dfrac{1}{9} + ….. + \dfrac{1}{99} – \dfrac{1}{101}$

    $= \dfrac{1}{3} – \dfrac{1}{101}$

    $= \dfrac{98}{303}$

    $b$) $\dfrac{1}{20} + \dfrac{1}{30} + \dfrac{1}{42} + \dfrac{1}{56} + \dfrac{1}{72} + \dfrac{1}{90}$

    $= \dfrac{1}{4.5} + \dfrac{1}{5.6} + \dfrac{1}{6.7} + \dfrac{1}{7.8} + \dfrac{1}{8.9}  + \dfrac{1}{9.10}$

    $= \dfrac{1}{4} – \dfrac{1}{10}$

    $= \dfrac{3}{20}$

    $c$ ) $\dfrac{x+30}{2} = \dfrac{x-29}{3}$

    $⇔ \dfrac{3x+90}{6} = \dfrac{2x-58}{6}$

    $⇔ 3x + 90 = 2x – 58$

    $⇔ 90 + 58 = 2x – 3x$

    $⇔ 148 = -x$

    $⇔ x = -148$

     Vậy $x=-148$

    Bình luận

Viết một bình luận