a) $\frac{6}{x^2-1}$ +5 =$\frac{8x-1}{4x+4}$ -$\frac{12x-1}{4-4x}$ b) $\frac{x+4}{x^2-3x+2}$ – $\frac{x+1}{x^2-4x+3}$ = $\frac{2x+5}{x^2-4x+3}$

a) $\frac{6}{x^2-1}$ +5 =$\frac{8x-1}{4x+4}$ -$\frac{12x-1}{4-4x}$
b) $\frac{x+4}{x^2-3x+2}$ – $\frac{x+1}{x^2-4x+3}$ = $\frac{2x+5}{x^2-4x+3}$

0 bình luận về “a) $\frac{6}{x^2-1}$ +5 =$\frac{8x-1}{4x+4}$ -$\frac{12x-1}{4-4x}$ b) $\frac{x+4}{x^2-3x+2}$ – $\frac{x+1}{x^2-4x+3}$ = $\frac{2x+5}{x^2-4x+3}$”

  1. Đáp án:

    a. x=2

    Giải thích các bước giải:

    \(\begin{array}{l}
    a.DK:x \ne  \pm 1\\
    \frac{{6 + 5\left( {{x^2} – 1} \right)}}{{\left( {x – 1} \right)\left( {x + 1} \right)}} = \frac{{\left( {8x – 1} \right)\left( {x – 1} \right) + \left( {12x – 1} \right)\left( {x + 1} \right)}}{{4\left( {x – 1} \right)\left( {x + 1} \right)}}\\
     \to 24 + 20{x^2} – 20 = 8{x^2} – 9x + 1 + 12{x^2} + 11x – 1\\
     \to 2x = 4\\
     \to x = 2\left( {TM} \right)
    \end{array}\)

    \(\begin{array}{l}
    b.DK:x \ne \left\{ {1;2;3} \right\}\\
    \frac{{x + 4}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} – \frac{{x + 1}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} – \frac{{2x + 5}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
     \to \frac{{x + 4}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} – \frac{{x + 1 – 2x – 5}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
     \to \frac{{x + 4}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} – \frac{{ – x – 4}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
     \to \frac{{x + 4}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} + \frac{{x + 4}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
     \to \frac{{\left( {x + 4} \right)\left( {x – 3} \right) + \left( {x + 4} \right)\left( {x – 2} \right)}}{{\left( {x – 2} \right)\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
     \to {x^2} + x – 12 + {x^2} + 2x – 8 = 0\\
     \to 2{x^2} + 3x – 20 = 0\\
     \to 2{x^2} + 8x – 5x – 20 = 0\\
     \to 2x\left( {x + 4} \right) – 5\left( {x + 4} \right) = 0\\
     \to \left( {x + 4} \right)\left( {2x – 5} \right) = 0\\
     \to \left[ \begin{array}{l}
    x =  – 4\\
    x = \frac{5}{3}
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận