a) $\frac{(a+b)2 – (a-b)2}{4}$ = ab
b) 2($x^{2}$+$y^{2}$ )=(x+y)$^{2}$ +(x-y)$^{2}$
c) $x^{2}$ +y$^{2}$ =(x+y)$^{2}$ -2xy
d) (x+y) $^{2}$ – (x-y)(x+y)=2y(x+y)
a) $\frac{(a+b)2 – (a-b)2}{4}$ = ab
b) 2($x^{2}$+$y^{2}$ )=(x+y)$^{2}$ +(x-y)$^{2}$
c) $x^{2}$ +y$^{2}$ =(x+y)$^{2}$ -2xy
d) (x+y) $^{2}$ – (x-y)(x+y)=2y(x+y)
Đáp án:
a) ` ((a+b)^2 – (a-b)^2)/4 = (a^2+ 2ab +b^2 – a^2 + 2ab – b^2)/4`
` = ((a^2 – a^2) + (b^2-b^2) + 4ab)/4`
` = 4(ab)/4`
` = ab`
b) ` (x+y)^2 + (x-y)^2 = x^2 + 2xy + y^2 + x^2 -2xy + y^2`
` = (x^2 +x^2) + (y^2 +y^2) + (2xy -2xy)`
` = 2x^2 + 2y^2 + 0`
` = 2(x^2 +y^2)`
`c) `
` (x+y)^2 – 2xy = x^2 +2xy + y^2 – 2xy`
` = x^2 + y^2 + (2xy – 2xy)`
` = x^2 + y^2`
`d)`
` ( x+y)^2 -(x-y)(x+y) = x^2 + 2xy +y^2 – (x^2 -y^2)`
` = (x^2 -x^2) + 2xy + (y^2 + y^2)`
` = 0 + 2xy + 2y^2`
` = 2y(x+y)`
a)2(a^2+b^2)=0 => a^2+b^2=0 => a=0,b=0
b)2(x^2+y^2)=2(x^2+y^2)
c)x^2+y^2=x^2+y^2
d)x^2+y^2+2xy-x^2+y^2=2xy+2y^2
=> 0=0